
rslidy: Responsive Presentation Slides in HTML5 and CSS3

Markus Schofnegger

Institute for Information Systems and Computer Media (IICM),
Graz University of Technology

A-8010 Graz, Austria

02 Nov 2015

Abstract

This thesis describes rslidy, a new version of an HTML-based web tool, which allows users to create responsive
slide presentations. It is based on the idea of Slidy2 written by Dave Raggett, but extends it to be responsive,
work on multiple browsers and platforms, and adds several new features. This is achieved by using responsive
web design methods like CSS3 Media Queries.

In the first part of this thesis, front-end web technologies like HTML5, CSS3 and JavaScript used during
the development of rslidy are described. Furthermore, other web-based slide tools are presented and compared
according to their features and implementations. rslidy and its functionality and architecture are explained in
the second half. This includes rslidy’s code base and all of its major features. It is also shown how to use it for
presentations and which settings can be changed.

Finally, this thesis explores features still missing in rslidy and shows how they could be implemented during
future updates. For example, advanced web technologies like WebSockets for remote navigation are mentioned.

Contents

Contents iii

List of Figures v

List of Tables vii

List of Listings ix

1 Introduction 1
1.1 Web-Based Presentation Slides . 1
1.2 Motivation . 2
1.3 rslidy’s Framework . 2

2 Front-End Web Technologies 3
2.1 HTML5 . 3
2.2 CSS3 . 3
2.3 JavaScript . 4
2.4 TypeScript . 4
2.5 Progressive Enhancement . 4
2.6 Responsive Web Design . 5

3 Presentation Slides in HTML 7
3.1 Slidy and Slidy2 . 7

3.1.1 Slidy2 Features . 7
3.1.2 Slidy2 Implementation Details . 7

3.2 google-slides from Google I/O . 8
3.2.1 google-slides Features . 8
3.2.2 google-slides Implementation Details . 9

3.3 S5 . 9
3.3.1 S5 Features . 9
3.3.2 S5 Implementation Details . 10

3.4 S9 (Slide Show) . 11
3.4.1 S9 Features . 11
3.4.2 S9 Implementation Details . 12

3.5 remark.js . 12

i

3.5.1 remark.js Features . 12
3.5.2 remark.js Implementation Details . 12

3.6 reveal.js . 13
3.6.1 reveal.js Features . 13
3.6.2 reveal.js Implementation Details . 14

3.7 diascope . 14
3.7.1 diascope Features . 14
3.7.2 diascope Implementation Details . 14

3.8 The First rslidy and its Successor rslidy2 . 15

4 The New rslidy 17
4.1 Architecture of rslidy . 17

4.1.1 Files . 17
4.1.2 Initialisation . 18
4.1.3 Styling and DOM Manipulation . 18
4.1.4 Key and Mouse Events and Listeners . 19
4.1.5 Navigation Methods . 19
4.1.6 The Utils class . 19

4.2 Cross-Platform Compatibility . 19
4.2.1 The Stylesheet . 19
4.2.2 Web Browsers and Platforms . 20
4.2.3 Changing the Size of the Presentation . 20
4.2.4 Feature Sniffing . 20

4.3 Slides and Navigation . 20
4.3.1 Slides Navigation . 20
4.3.2 Slide Overviews . 20
4.3.3 Incremental Lists . 21
4.3.4 Status Bar . 21
4.3.5 Editing and Adding New Slides . 22

4.4 Touch Events and Motion Gestures on Mobile Devices . 22
4.4.1 Swiping . 22
4.4.2 Tilting . 23
4.4.3 Shaking . 23

4.5 Low Light Mode . 23

5 Selected Details of the Implementation 25
5.1 Low Light Mode . 25
5.2 SVG Graphics on iOS . 25

6 Future Work 27
6.1 More Touch Events and Key Bindings . 27
6.2 Remote Navigation using Mobile Devices . 27
6.3 Slide Editor . 27
6.4 More Information during the Presentation . 27

ii

7 Concluding Remarks 29

A User Guide 31
A.1 Extracting the rslidy Archive File . 31

A.2 Adding rslidy to a Project . 32

A.3 The slide and titleslide Classes . 32

A.4 Using Incremental Lists . 32

A.5 Customising the Appearance of the Presentation . 32

A.6 JavaScript Settings for the Presentation . 32

Bibliography 35

iii

iv

List of Figures

2.1 CSS Syntax . 4

3.1 Slidy2 on Mobile Devices . 8

3.2 Google-Slides on Mobile Devices . 9

3.3 S5 on Mobile Devices . 10

3.4 Reveal’s Two-Dimensional Navigation . 13

4.1 rslidy’s User Interface . 18

4.2 rslidy’s Navigation Controls . 21

4.3 rslidy’s Menu . 22

4.4 rslidy’s Appearance in Low Light Mode . 24

4.5 rslidy’s Normal Appearance . 24

A.1 Files Needed for rslidy . 32

v

vi

List of Tables

A.1 Settings for rslidy . 34

vii

viii

List of Listings

5.1 Low Light Mode with SVG Graphics . 26

5.2 Manually Inverting an Element’s Colour . 26

5.3 Changing SVG Tags on iOS Devices . 26

A.1 HTML Commands Necessary to Include rslidy . 32

A.2 HTML Code for a Simple Slide . 33

A.3 Sample Code for Incremental Lists . 33

ix

x

Chapter 1

Introduction

rslidy is a new version of a web-based presentation tool. It allows users to create responsive presentations by
adding slides to an HTML file. This chapter explains the benefits of web-based presentation tools, especially
when compared to traditional software. It also describes the motivation behind developing rslidy and why the
choice to extend the original Slidy2 has been made. Afterwards, existing solutions with different approaches
like google-slides and older versions of rslidy are explained.

The third chapter gives a detailed overview of the new implementation. Special attention is paid to the key
features like the new navigation panel and gestures for mobile devices. The compatibility of rslidy and ideas
for future improvements are also mentioned.

Finally it is shown, how to use rslidy for a presentation. The necessary steps to combine the rslidy library
with an existing HTML presentation file are exactly described and all supported customisation options are
explained. This includes settings available in the JavaScript file and user-defined CSS rules.

1.1 Web-Based Presentation Slides

In contrast to conventional presentation software like Microsoft’s PowerPoint, web-based presentation tools do
not need to be installed on the user’s computer. Instead, they can be accessed using a web browser, a tool often
available by default on major platforms. This allows for a hassle-free deployment of presentations, without
having to worry about compatibility issues and different file formats.

The long list of PowerPoint’s features also includes animation effects like fade-ins, which can be used while
navigating from one slide to another. These effects often help to distract the audience rather than improving
the quality of the slides. [Mahar, Yaylacicegi and Janicki, 2008] showed the same presentation to two differ-
ent groups of people, one with animations, the other without them. It was found that the people who saw the
presentation without animations scored better in this specific study. This means that one of PowerPoint’s popu-
lar features is not needed for a convincing presentation, making simple and lightweight web-based presentation
tools an even more attractive choice.

One of the first HTML-based alternatives to PowerPoint was Slidy, which was developed by Dave Raggett
[Raggett, 2006b] and is now hosted on the web servers of the W3C (World Wide Web Consortium) [Raggett,
2006a]. It implements basic features like slide navigation using the left and right arrow keys and also allows
users to create their own slides within an HTML file.

rslidy is an attempt to improve Slidy’s responsiveness and to add new features, making it an even more
sophisticated web-based solution. While developing rslidy, special attention was paid to the compatibility with
different devices. Furthermore, it also supports touch and motion events on most modern smart phones.

1

2 CHAPTER 1. INTRODUCTION

1.2 Motivation

Many web-based slide presentation solutions are currently available and some of them will be described later
on. While most already work well, they often do not scale or are not usable on mobile devices. rslidy was
developed with special attention to the following attributes:

• Responsiveness: rslidy is able to scale between multiple screen resolutions and to adapt the size and
position of its control elements.

• Compatibility: Most browsers are supported by rslidy and it also works on mobile devices such as modern
smart phones.

• Minimalism: rslidy is implemented using a single JavaScript file and the code architecture behind it is
straight-forward and easy to understand.

1.3 rslidy’s Framework

rslidy is built from scratch. It does not share any source code with the original Slidy. It has no dependen-
cies on other third-party libraries. Due to rslidy’s backward compatibility, old slides containing the slide or
incremental classes can be used without problems. How to use rslidy is shown in Section A.2.

Chapter 2

Front-End Web Technologies

HTML5, CSS3 and JavaScript are today’s most commonly used front-end web technologies. In this chapter,
they are briefly described. Furthermore, Microsoft’s TypeScript language is covered, since rslidy is written in
TypeScript and then compiled into JavaScript.

2.1 HTML5

HTML stands for Hypertext Markup Language and was originally released in 1992 [W3C, 1992]. It is a
markup language providing a specific syntax used to structure elements on a website. HTML is now in its
fifth version called HTML5 and includes many new features like audio and video support and the canvas tag.
Unlike XHTML2, a one-time rival to HTML5, it does not stop older web pages working thanks to its backward
compatibility [MacDonald, 2014].

HTML is used to define the basic structure of a website. From within an HTML document, other files like
CSS stylesheets or JavaScript libraries and functions can be included. HTML is executed client-side and is
interpreted by the web browser.

2.2 CSS3

CSS (Cascading Style Sheets) files are used to define the appearance of HTML elements in the web browser.
The first version of CSS was published by the World Wide Web Consortium (W3C) in 1995 [W3C, 1995]. It is
now available in its third version called CSS3 [W3C, 2015a].

CSS uses declarations (what styles to apply) and selectors (where to apply them). Selectors can address
specific sets of HTML elements. Apart from simply selecting an element by an ID, selectors also support more
sophisticated methods like addressing an element only when it is hovered over or when it is nested within
another user-defined element. The different parts of the CSS syntax is shown in Figure 2.1.

With CSS, many different rules can apply to the same element. For instance, multiple colours can be applied
to the same element on a website. The Cascading in CSS means that more specific CSS rules override more
general ones. Cascading can also be deactivated for a single property by adding the CSS keyword !important

to its value, which makes this property ignore values inherited from parent elements. Some of the new CSS3
features used in rslidy include transform, the calc() function and CSS media queries.

The transform property can be used to make an HTML element and its content appear smaller [W3C,
2015b]. The calc function allows web developers to use multiple measurement units within one CSS rule. For
instance, percentage and px can be used simultaneously. The calc function works in combination with CSS
properties like width or height. Finally, media queries can be used to select the target screen resolution or ori-
entation for CSS rules. This help to differentiate between various devices, but also between screen orientations
like landscape and portrait mode.

3

4 CHAPTER 2. FRONT-END WEB TECHNOLOGIES

Figure 2.1: The CSS Syntax. The selector is red and defines the elements. Properties are blue and their
corresponding values are orange in this example. Everything inside the curly brackets is
referred to as the declaration.

2.3 JavaScript

JavaScript [Mozilla, 2015c] is the most commonly used programming language in web applications [Flanagan,
2011]. It was created by Brendan Eich at Netscape in 1995 and called LiveScript [W3C, 2012]. LiveScript and
JavaScript were originally intended to be run inside the web browser, allowing web developers to interact with
HTML elements.

Today, JavaScript is a modern programming language able to be executed both client-side and server-
side. While the client-side version still runs inside web browsers, server-side versions of JavaScript include
open-source solutions like Node.js [Node.js Foundation, 2015], which are executed directly on a web server.
The basis of JavaScript is the ECMAScript standard [ECMA, 2015], currently in its sixth version. While
ECMAScript 5 is widely supported, many of ECMAScript 6’s features are still not available on some web
browsers. However, development on ECMAScript 7 has already begun. This version will include several new
features like easier usage of asynchronous functions.

All major web browsers support JavaScript and most JavaScript built-in functions are compatible with them.
In interactive web applications like rslidy, JavaScript is often used to accept user inputs and to start procedures
based on these inputs.

2.4 TypeScript

TypeScript [Microsoft, 2012] is a programming language and was developed by Microsoft in 2012. Unlike
JavaScript, it supports type declarations. TypeScript is not compatible with today’s web browsers, but it can be
translated to a JavaScript file by using its compiler. In large projects, TypeScript is used to help web developers
to quickly find errors regarding the declarations and usage of variables before actually executing the code.

2.5 Progressive Enhancement

Progressive Enhancement is a technique first mentioned by Steven Champeon and Nick Finck in 2003 [Champeon
and Finck, 2003]. Its idea is to build web pages with functionality on all web-enabled devices in mind. This is
possible by starting with a static HTML code base, which works without problems on every web browser. Only
then, stylesheets (CSS) are added to the HTML code in order to change the appearance of HTML elements.
Being the most critical part of a web site when it comes to compatibility, JavaScript is added at the end of this
process. This method ensures a minimalistic yet still usable website even on devices, which support neither
CSS nor JavaScript.

Progressive Enhancement is not the only way to handle compatibility issues on different devices. Another
method called Graceful Degradation was already used before 2003 and still is. Its idea is to build a new website
for larger displays and for the most advanced web browsers. Testing the website on older browsers or on mobile
devices is not the main focus of the development and usually takes place at the end of it. This often results in
older browsers and devices not displaying the page correctly. Due to these issue and since the rise of mobile
web usage, Progressive Enhancement is considered the future of Web Design [Foster, 2012].

2.6. RESPONSIVE WEB DESIGN 5

2.6 Responsive Web Design

Responsive Web Design is a technique to build and design web sites. It focuses on providing an optimal and
mostly similar web experience across all devices. Ensuring this is especially difficult when devices with large
differences in screen size should be able to use the web site without problems.

The method relies on changing the appearance of elements based on the screen resolution of the user’s
device. This is possible thanks to CSS3 Media Queries, for example. In general, appropriate usage of CSS is
enough to ensure a good user experience on all devices [W3Schools, 2015].

6 CHAPTER 2. FRONT-END WEB TECHNOLOGIES

Chapter 3

Presentation Slides in HTML

Many solutions are available for creating presentation slides in HTML. The focus in this chapter is laid on the
features of each solution, their responsiveness, their compatibility with multiple devices and the technologies
used.

3.1 Slidy and Slidy2

One of the first web-based presentation tools was Slidy [Raggett, 2005] developed by Dave Raggett in 2006. It
is now available in its second version, called Slidy2 [Raggett, 2006b].

3.1.1 Slidy2 Features

Slidy2 offers a very basic set of features. All slides are defined inside a single HTML file. Navigating within a
presentation is done using the Left and Right arrow keys, or the Pg Up and Pg Dn keys. Jumping to the first
and last slide is possible using the Home and End keys, respectively.

Slidy2 includes a status bar, located at the bottom of every slide. The status bar also contains only two
clickable links: help and contents. The help link jumps to another HTML file, where the features and
navigation of Slidy2 are explained. Slidy2 does not have a navigation panel, but offers a table of contents by
clicking the contents link.

The status bar also shows the number of slides of the presentation and which slide is currently visible. It
also includes a timer, helping the user to know how much time they have still left for the presentation. The total
duration for the presentation in minutes can be changed using a meta tag in the slides’ HTML file, for instance
<meta name="duration" content="3" />, which would set the timer to three minutes. If the user does not
want the status bar to appear in the presentation, it can also be hidden by using the F key.

Apart from contents inside pre tags, Slidy2 is very responsive and scales quite well to smaller screens,
even when used in portrait mode. Navigation on devices with a touch screen works by swiping left or right.
Additionally, it is possible to show the table of contents by swiping up and to hide it by swiping down. The
largest disadvantage when using Slidy2 on a mobile device is the status bar being far too small, shown in
Figure 3.1. The current slide number can hardly be seen and links cannot be clicked without zooming in. This
means that the table of contents is very hard to use on smaller devices.

3.1.2 Slidy2 Implementation Details

Slidy2 is a very minimalistic presentation tool. Thus it can easily be used offline and is written entirely using
HTML, CSS and pure JavaScript. Only three files are needed to use Slidy2:

• slidy.js

• slidy.css

7

8 CHAPTER 3. PRESENTATION SLIDES IN HTML

Figure 3.1: Slidy2’s status bar at the bottom of the screen is hardly visible on mobile devices.

• A user-defined HTML file containing the slides

Inside slidy.js, there is a single class called w3c_slidy. This class contains all the methods needed for the
execution of Slidy2 and no other script files are included.

3.2 google-slides from Google I/O

A solution from Google was developed by Eric Bidelman in 2012 [Google, 2012] for Google I/O talks in the
same year. It focuses on a modern and sleek design, many customisation options, and a huge set of features.
Similar to dedicated presentation software, it also supports animations and transitioning effects.

3.2.1 google-slides Features

Google’s google-slides is one of the most comprehensive solutions available. Its many customisation options
can be changed within a single file named slide_config.js. Users are able to change the title, information about
themselves, add different themes, and customise the general behaviour of the presentation. Options changed in
this file affect the whole presentation, not just a selected set of slides.

Displaying the previous or the next slide is done by using the arrow keys or the Pg Dn and Pg Up keys,
respectively. While there is also an overview mode available, which can be toggled by the user and shows the
previous and the next slide of the currently visible slide, google-slides does not include an advanced navigation
panel or any other navigation option. Thus, it is impossible to quickly jump to slides further away from the
current one.

It is possible to change the appearance of the slides just by using different key buttons. A user can toggle a
so-called widescreen mode, for instance, changing the aspect ratio of the slides from 16:9 to 4:3. Other options
include the possibility to highlight important sections on a slide. This can be used to show important parts of a
displayed source code, for instance. The user is also able to define their own speaker notes, which can then be
toggled on the corresponding slide by pressing the P key. These speaker nodes can be added within the HTML
file itself and are overlaid on top of the displayed slide.

3.3. S5 9

tp]

Figure 3.2: Google’s google-slides does not scale well in landscape mode on mobile devices. Both the
title and the slide’s content are not fully visible.

google-slides is currently supported on Chrome, Mozilla Firefox, Safari’s desktop browser, Opera and on
Microsoft’s Internet Explorer. It also works on iOS 4.3 and later versions and on Chrome for Android. On
mobile devices, it is only possible to switch between slides by using swipe gestures. Due to the lack of key
buttons, other options like the afore-mentioned overview mode are not available on touchscreen devices. The
biggest disadvantage, however, is that the whole presentation does not scale well when being used in landscape
mode on mobile devices. This issue can be observed in Figure 3.2.

3.2.2 google-slides Implementation Details

google-slides works by using a basic HTML file and many different JavaScript files. It uses CSS for its styles.
The following technologies are used:

• Compass, which is a CSS preprocessor used for browser compatibility (pure CSS can also be used,
though)

• flexbox to define slide layouts

• RequireJS, a library used to load multiple JavaScript files or modules

• HTML5’s window.postMessage to communicate with other browser windows (used for speaker mode)

• HammerJS for touch events

google-slides needs many different JavaScript files in order to work, making it a rather large package with
many dependencies in comparison to Slidy2 or the new rslidy.

3.3 S5

S5 is short for Simple Standards-Based Slide Show System and, similar to Slidy and rslidy, it is a very light-
weight presentation tool [Meyer, 2015]. It relies entirely on XHTML, CSS, and JavaScript and does not use
any other web technologies. The initial version of S5 was written by Eric Meyer and released under a Creative
Commons License in 2004 [Meyer, 2004].

3.3.1 S5 Features

Being one of the first alternatives to conventional presentation software, S5’s set of features is very minimalistic
when compared to google-slides and other more comprehensive solutions. One of the important advantages of

10 CHAPTER 3. PRESENTATION SLIDES IN HTML

Figure 3.3: S5 has very small navigation controls on mobile devices.

S5 is the ability to auto-scale every text visible on the slides. Thus, the final screen resolution does not change
the appearance of the presentation. On the other hand, zooming in and out on a web browser does not affect
the size of the text and the auto-scale feature cannot be turned off while conducting a presentation. This makes
it impossible to adjust the size of the content when needed.

Just like Slidy2 and rslidy, S5 also offers the possibility to create incremental content, for instance incre-
mental lists. The user just adds the class incremental to lists and its items will be shown one at a time. This
also works for other elements like images, allowing for very basic animation effects.

S5 implements an easy to use navigation system. The Left and Right arrow keys switch between slides.
Alternatively, the Up and Down keys can be used. S5 does not include any possibility to navigate by using
slide thumbnails, but it offers a table of contents, which can be found in the bottom right corner of every slide.
These navigation controls can be shown by hovering over the bottom status bar with the mouse or by pressing
the C key. If the user wants to see all the slides on one page without having to navigate, they can toggle the
appearance of the presentation by hitting the T key.

S5 gives information about which slide is currently displayed in the bottom centre of the presentation.
Unlike the navigation controls, the number of the current slide is always visible. It is possible to create book-
marks to specific slides. This can be done by adding a #slide{number} to the URL of the presentation, like in
http://www.example.com/demo.html#slide2.

Being developed using very basic web tools, S5 is compatible with most major web browsers. An exception
is Microsoft’s Internet Explorer, where the table of contents located in the status bar is not usable.

Furthermore, S5 supports neither touch events nor tilt or shake gestures. The only possibility to navigate
on a modern touchscreen device is by pressing the buttons provided in the bottom right corner or by using the
table of contents. These elements are very small when compared to the rest of the content and quite hard to hit,
which makes navigating on smaller touchscreens relatively difficult. This problem is shown in Figure 3.3.

3.3.2 S5 Implementation Details

S5 is a lightweight package using only XHTML, JavaScript and CSS. The most important files are:

• slides.js

3.4. S9 (SLIDE SHOW) 11

• slides.css

• s5-core.css

• framing.css

• pretty.css

• print.css

S5’s whole functionality is implemented in slides.js. This file does not contain any classes, instead
everything is implemented using global functions and variables.

The file s5-core.css contains S5’s core rules and is not intended to be edited by the user. Instead, framing.css
and pretty.css should be used. The former can be edited to adjust the basic layout of the slides, while the latter
is responsible for colours, fonts, text alignments and similar properties. Finally, print.css contains important
rules for a printer-friendly version of a presentation.

3.4 S9 (Slide Show)

Slide Show (S9) is a presentation tool which allows users to create and author slides in plain text [Bauer,
2015b]. It was developed by Gerald Bauer and the first version was released in February 2008 [Bauer, 2008].
S9 is based on S6, also developed by Gerald Bauer [Bauer, 2015a], and uses most of S6’s architecture. However,
it adds a new way to edit or create slides using a Markdown language [Gruber and Swartz, 2004]. Creating a
presentation by using the HTML file only is also possible, though. Unlike the other solutions presented in this
chapter, S9 is entirely written in Ruby.

3.4.1 S9 Features

S9 is a comparatively modern alternative to conventional presentation software. It inherits many features from
S5 discussed in the previous section. The navigation controls are very similar and even the status bar located
at the bottom of the presentation is the same. It is possible to navigate using the arrow keys or the Space key.
Alternatively, the heading of the currently displayed slide can be clicked, which also navigates to the next slide.
The current slide number is displayed at the bottom of the presentation. S9 also includes a navigation menu
very similar to S5, which can be shown by moving the mouse to the bottom right corner or by pressing the C

key.
Unlike S5, S9 does not automatically scale the contents visible during the presentation. This allows the

user to manually zoom in or out, adjusting the font size to their needs.
S9’s implementation of incremental slide content is different compared to other solutions. Instead of adding

a class incremental to a list, the user adds a class step to a div element, which causes the software to display
items with this class one at a time.

Slide authors do not edit HTML files directly. Instead, S9 uses the Markdown language developed by John
Gruber and Aaron Swartz in 2004 [Gruber and Swartz, 2004]. A Markdown file is then converted into an
HTML file using the provided command line tools.

S9 is compatible with most major browsers, but its table of contents navigation control is not usable in
Microsoft’s Internet Explorer. This issue could also be observed in S5. Moreover, touch events like swiping
and motion gestures like tilting are not recognised, making navigation on touchscreen devices rather difficult.
The table of contents works, but is hard to use due to its small size and location at the bottom.

S9 allows users to install custom templates, automatically replacing the CSS files responsible for the
presentation’s appearance. This can be done by using the command line tools provided. It is also possible
to add new features like a syntax highlighter by installing new templates.

12 CHAPTER 3. PRESENTATION SLIDES IN HTML

3.4.2 S9 Implementation Details

S9 is entirely written in Ruby and can be downloaded using rubygems [Quaranto, 2015] with the command
gem install slideshow. Markdown is used to create or edit slide contents. The user creates a whole present-
ation in a single Markdown file and this file is then translated into a browser-compatible HTML file by S9.

To display the navigation controls and for animation effects when switching slides, S9 uses JavaScript,
more specifically jQuery. Two JavaScript files are required, jquery.js and jquery.slideshow.js. jquery.js is the
jQuery JavaScript library. The other file was originally used in S6 and provides the core functionality needed
for the slide show.

3.5 remark.js

Remark.js is a web-based presentation tool developed by Ole Petter Bang which uses HTML and JavaScript
[Bang, 2015a]. Users edit slides using the Markdown language [Gruber and Swartz, 2004] directly inside the
HTML file. It aims for a modern and sleek design, but lacks many features provided by other solutions.

3.5.1 remark.js Features

Remark.js describes itself as a "simple, in-browser, Markdown-driven slideshow tool targeted at people who
know their way around HTML and CSS" [Bang, 2015b]. Some of the key features mentioned by the author are:

• The usage of Markdown.

• Syntax highlighting compatible with many different programming languages.

• Auto-scaling of slide content.

• Support for touch gestures.

Just like in S9, in remark.js users can edit slides using the Markdown language [Gruber and Swartz, 2004],
which is converted to browser-compatible HTML code by its JavaScript library. However, the Markdown
language is used directly inside the HTML file and editing slides in plain HTML is not easily possible.

Remark.js supports the highlighting of programming languages using a third party plugin. Furthermore, it
scales every slide’s content automatically, which results in a very similar appearance among different devices.
Just like S5, which also supports the auto-scaling of slide content, remark.js does not allow the user to disable
this feature during a presentation. This means that font sizes and other content cannot be adjusted dynamically
by the user.

On devices connected to a keyboard, the arrow buttons can be used to navigate. Alternatively, the mouse’s
scroll wheel can be used. Remark.js is able to detect touch events and swiping left or right displays the next or
previous slide, respectively.

A more sophisticated navigation menu like a table of contents is not included in remark.js. However, it is
possible to add custom slide notes and show them using the P key, which toggles a so-called Presenter Mode.
While using this mode, a timer indicating the remaining presentation time is also visible. Moreover, the number
of the currently displayed slide can be seen in the bottom right corner of the presentation. A full overview with
all available commands listed can be shown by pressing the H key. Various options like the aspect ratio used for
the slides or the navigation controls available can be customised by the user.

Since it uses HTML and JavaScript, Remark.js is compatible with most modern browsers. However, some
styles and features like the auto-scaling feature do not work on Microsoft’s Internet Explorer.

3.5.2 remark.js Implementation Details

Remark.js is entirely written in HTML, Markdown and JavaScript. It uses CSS to style its elements. The core
functionality is not implemented within a single JavaScript file, instead remark.js divides the implementation

3.6. REVEAL.JS 13

Figure 3.4: Reveal.js supports two-dimensional slide shows.

into many different modules. For instance, every component can be found in a different file. Syntax high-
lighting is added by using a third party library called highlight.js [Sagalaev, 2015]. Currently, more than 130
programming languages are supported.

Separate CSS files are not used, instead all CSS rules are applied within the HTML document itself and by
JavaScript. This makes it rather difficult to customise the overall appearance when compared to other web tools
using external CSS files.

3.6 reveal.js

Reveal.js is one of the largest packages presented in this chapter. It was developed by Hakim El Hattab and
originally released as a tool called CSS 3D Slideshow [Hattab, 2015a]. This version was then updated in 2011,
adding many new features.

3.6.1 reveal.js Features

Reveal.js is very different from basic HTML presentation tools due to its sophisticated navigation system.
Instead of implementing a traditional one-dimensional slide show, reveal.js uses a two-dimensional arrangement
for the slides, shown in Figure 3.4. This means that the user can also navigate vertically. Controls for the
navigation are very similar to the other solutions presented in this chapter. Arrow keys switch between the
slides in an horizontal way, but the Up and Down keys are used for vertical navigation.

To simply view all the slides one after another, without having to worry about horizontal and vertical
navigation, the user can just use the Space key. An element in the bottom right corner shows in which directions
the user can currently navigate to and a progress bar at the very bottom of the presentation indicates the number
of slides remaining.

Reveal.js includes an overview mode, which can be toggled using the Esc key. The overview mode basically
zooms away from the current slide, showing it together with some of its neighbouring slides. This is the only
navigation menu available, a table of contents or similar features are not included.

Different themes are available and animated slide transitions are supported. These transitions can be cus-
tomised by the user and it is possible to set a different transition for every different slide. Incremental lists are
also supported, along with syntax highlighting and the embedding of HTML blockquotes. The presentation
can be paused with the B key, which causes the current slide to fade out. By hitting the same key again, the
presentation continues.

Reveal.js is compatible with all browsers tested, including Microsoft’s Internet Explorer. Moreover, it is
able to detect touch events and thus works flawlessly on mobile touchscreen devices. However, motion gestures
like tilting and shaking are currently not supported.

14 CHAPTER 3. PRESENTATION SLIDES IN HTML

3.6.2 reveal.js Implementation Details

Reveal.js is relatively modern and one of the most complete packages presented in this chapter. It has a large
set of built-in features and is very customisable compared to other solutions. Furthermore, it is compatible with
most devices. reveal.js is comparatively large and consists of multiple different files. The core functionality
is implemented in a file called reveal.js, which uses only pure JavaScript. Reveal.js uses third party plugins to
support some of its features, for instance hightlight.js [Sagalaev, 2015] and zoom.js [Hattab, 2015b]. The latter
was also developed by Hakim El Hattab.

The user can edit and add new slides using the HTML file provided, where slides are separated with
HTML5’s section tag. Multiple CSS files are used to define the presentation’s appearance.

3.7 diascope

Diascope is a slideshow program developed by Martin Stoll and last updated in February 2015 [Stoll, 2015].
In contrast to Slidy or rslidy, it is not a pure web-based presentation tool. Rather then relying on JavaScript
and HTML, the contents of the slides are edited within a text file, which is then parsed by diascope. That
is, diascope is a tool, which has to be installed on the user’s Linux computer and can only be run from the
command line.

3.7.1 diascope Features

The user defines slides inside a text file. This file is then used by diascope to create the presentation. The output
is a video file, which can be played offline and also made available online due to comprehensive encoding
options. The possible output video formats are dv, mpeg2, mpeg4 and flv. The codec mpeg4 is supported in
every major browser [W3C, 2015c], including most mobile devices. Thus, online presentations with HTML5’s
video tag are easily possible.

Due to an actual video file being played during a presentation, there are numerous options for animation
effects and the embedding of other media files, which are not supported when using pure HTML. This makes
diascope very similar to conventional presentation software like Microsoft’s PowerPoint, as far as animation
effects or the embedding of other media files are concerned.

On the other hand, diascope only supports images for slides. It does not allow the user to write the slide
contents directly and instead forces them to create pictures. Alternatively, the implemented create command
can be used to add text to slides.

Furthermore, navigating inside the resulting video file is not possible, which means that switching slides
manually cannot be done. The only way to simulate navigation is to seek inside the video file itself, which is
inconvenient when compared with the other tools presented in this chapter.

When it comes to mobile devices, creating a presentation supported on all major web browsers is pos-
sible with the encoding options provided. Its responsiveness, however, cannot be compared to HTML-based
presentations, because font sizes and similar attributes do not scale when using a pure video file.

diascope saves rendering time by recycling as many parts as possible from a previous run. It also supports
multi-core rendering and the number of processing units can even be adjusted be the user.

To try out a new presentation before publishing it, the quality of the resulting video file can also be changed.
This makes the encoding process a lot faster and allows for quick changes.

3.7.2 diascope Implementation Details

The programming language used for diascope is C. It can be started by compiling it on a Linux machine
and running the resulting executable file. It is currently not possible to use diascope on other operating sys-
tems. A simple compile command for a provided text file defining the presentation would look like this:
diascope presentation.txt

3.8. THE FIRST RSLIDY AND ITS SUCCESSOR RSLIDY2 15

3.8 The First rslidy and its Successor rslidy2

Previous versions of rslidy were developed with special attention to compatibility and responsiveness. The first
rslidy was released in 2014 and its successor rslidy2 was released in 2015. The former rslidy from 2014 is
referred to as rslidy1 in this section.

Features

Both versions are similar when it comes to their features. Navigation works using the arrow keys. In rslidy1,
the left mouse button can be used to switch to the next slide, in rslidy2 the Home and End keys lead the user
to the first and last slide, respectively. rslidy1 includes a more sophisticated navigation menu than Slidy, by
displaying the slide contents as thumbnail images. rslidy2 copies this feature, but also implements the table of
contents found in Slidy. Both versions include a status bar showing the current slide and the total number of
slides. In rslidy2, the buttons Help and OptionsMenu are also located in the status bar. The former redirects
to a separate HTML file explaining how to use the software, while the latter allows the user to change some
settings.

rslidy1 and rslidy2 are compatible with the browsers tested, except for rslidy2 not working in Microsoft’s
Internet Explorer. While both versions are able to detect swiping gestures used for navigation, rslidy2 also
detects tilting and shaking gestures on supported devices. However, rslidy2’s navigation menu suffers from a
display bug on iOS and thus can hardly be used.

Implementation Details

Both rslidy1 and rslidy2 were developed by using only HTML, CSS and pure JavaScript. rslidy1 uses Ham-
merJS [Tangelder, 2015] to recognise touch events, while rslidy2 uses Full-Tilt [Tibbett, 2015] to handle device
motion events like tilting and shaking.

16 CHAPTER 3. PRESENTATION SLIDES IN HTML

Chapter 4

The New rslidy

The new version of rslidy was written from scratch, but it still shares some features with the original Slidy2 and
with previous versions of rslidy. While developing it, special attention was paid to a new minimalistic codebase
and to its responsiveness across different devices. In this chapter, the new version of rslidy, its architecture and
all of its improvements are described in detail.

4.1 Architecture of rslidy

The rslidy source code is completely written in TypeScript, which is then translated to a browser-compatible
JavaScript file with TypeScript’s compiler.

4.1.1 Files

By default, following files are used in rslidy:

• rslidy.css: This is the main stylesheet and is not intended to be edited by the user. Its main purpose is to
ensure responsiveness among different platforms.

• slides-default.css: This file contains basic rules for the appearance of the slides. It can be modified
according to the user’s needs (see Appendix A).

• rslidy.js or alternatively rslidy.min.js: All of rslidy’s functionality is implemented in rslidy.js, which was
automatically created by TypeScript’s compiler. The file rslidy.min.js is just a minified version of the
larger file and was created using Grunt [Grunt, 2015].

• rslidy.ts: This is the TypeScript file which was used for rslidy’s development.

The original TypeScript file, called rslidy.ts, contains two different classes: Rslidy and Utils. The former
is separated into four different sections:

• Initialisation

• Styling and DOM Manipulation

• Key/Mouse Events and Listeners

• Navigation

17

18 CHAPTER 4. THE NEW RSLIDY

Figure 4.1: The user interface of rslidy. After the initialisation, the website is divided into three different
parts. The red area is the navigation area containing both the Slides Overview and the Table of
Contents, the blue area is the content area (slides) and the green area at the bottom is rslidy’s
status bar.

4.1.2 Initialisation

This section contains the constructor and all other methods needed by rslidy to start. It is also responsible for all
member variables of the class. This includes the JavaScript settings, which can be edited by the user, as further
explained in Appendix A. The main method in this section is the init() method. It creates a new instance
of the Utils class, is responsible for the DOM (Document Object Model) manipulation, and changes settings
according to the platform or operating system being used. The init() method also adds all event listeners.
They are used to recognise button actions and touch gestures on supported devices, and also ensure the correct
positioning of elements after the window is zoomed or resized.

4.1.3 Styling and DOM Manipulation

rslidy reads the content of the body tag found in the HTML file and modifies it to create a presentation. In
particular, three main elements are added by rslidy:

• Navigation Area (containing the Slides Overview and the Table of Contents)

• Status Bar

• Menu

The slide navigation control is added by splitting the content of the original body into two different parts,
one of them being the new navigation area. Both the Slides Overview and the Table of Contents are generated
and added to this navigation area. The status bar and the menu are simply added to the body as new HTML
elements, whose positions are defined by rslidy’s stylesheet file. A detailed overview of rslidy’s GUI (Graphic
User Interface) along with the new elements added is shown in Figure 4.1.

All methods in this section are called once during the init() method, except for adjustOverviewPanel().
This method is responsible for resizing the thumbnail images inside the Slides Overview panel and is called
whenever the browser window is resized or zoomed.

4.2. CROSS-PLATFORM COMPATIBILITY 19

4.1.4 Key and Mouse Events and Listeners

Key and mouse events and listeners for them are used to recognise button actions and touch events. All listeners
are added to their related HTML elements by calling the addListeners() method. Listeners added to the
HTML page include:

• Button listeners (overview buttons, menu button, and all the buttons in the menu).

• Touch event listeners for swiping gestures.

• Window listeners for resizing.

• Window listeners for tilting and shaking.

Adding listeners is part of the initialisation and thus this method is called in the body of the init() method.

4.1.5 Navigation Methods

All other methods found inside the Rslidy class are responsible for the navigation itself, such as the transition
between two slides. Special features, for instance incremental lists, are also handled within these methods.

4.1.6 The Utils class

Finally, rslidy.ts contains a Utils class. This class provides functions often used by rslidy, but not directly
related to it. For example, it implements methods for casting between different data types or obtaining the
current width of the browser window.

4.2 Cross-Platform Compatibility

The ’r’ in rslidy stands for responsive. rslidy was developed for use on different platforms and screen resolu-
tions. rslidy is able to react to different screen sizes and device capabilities.

4.2.1 The Stylesheet

rslidy’s appearance is mainly defined by the rslidy.css file. To ensure compatibility among different screen
resolutions, relative CSS units, especially percentage and em, are preferred to physical units like px. Platform-
specific CSS prefixes were used when needed as a fallback, including:

• -ms-*

• -moz-*

• -webkit-*

For example, the CSS rule transform: scale3d(x, y, z) used to create the slides’ thumbnail images
does not work on iOS devices without the -webkit-* prefix.

CSS3 media queries are used to define different CSS rules for different screen resolutions and aspect ratios.
The content area, for instance, is only wrapped in landscape mode.

20 CHAPTER 4. THE NEW RSLIDY

4.2.2 Web Browsers and Platforms

rslidy is compatible with most major web browsers, both on desktop computers and on mobile devices. It was
tested on current versions of Mozilla Firefox, Microsoft Edge, Microsoft Internet Explorer, Google Chrome,
Apple Safari and Opera. Apart from the Low Light Mode, all of rslidy’s features work well on every web
browser mentioned. The reason for the Low Light Mode not working properly is that it uses the CSS3
filter: invert(x) property. CSS3 filters are not enabled by default on Microsoft Edge. On Microsoft’s
Internet Explorer, the invert value is not supported at all, making the Low Light Mode completely unusable.

On mobile devices, Apple Safari for iOS and Google Chrome for iOS were tested. rslidy works without
any problems and all touch and motion events are fully compatible with these mobile browsers.

4.2.3 Changing the Size of the Presentation

Zooming and resizing the window is fully supported in the new rslidy. The user can adjust the zoom level
by using the browser’s built-in features and rslidy will automatically recalculate the size and position of all
affected elements. For easier usage on mobile phones, it is possible to adjust the zoom level by using the
respective buttons, shown in Figure 4.3.

4.2.4 Feature Sniffing

rslidy adapts automatically to the current environment. For example, motion events like tilting and shaking are
disabled if they are not supported by the user’s web browser and options to turn them on are greyed out.

4.3 Slides and Navigation

The different navigation options of rslidy are described in this section. Moreover, it is explained how to use
incremental lists and how to edit or add new slides. Furthermore, the status bar is mentioned, which helps users
to change basic settings during a presentation.

4.3.1 Slides Navigation

One of the most important goals when developing a web-based presentation tool is to provide an easy way
to navigate through the presentation’s slides. Just like other presentation tools explained in Chapter 3, the
user is able to press the Left and Right arrow keys to navigate to the previous and next slide, respectively.
Alternatively, the Pg Down and Pg Up keys can be used. Users can quickly jump to the next slide by pressing
the Space key or the left mouse button. Moreover, the status bar contains two links, which allow to navigate
without using a keyboard. These links are not visible on very small screens. When using the navigation keys
while the Slides Overview is open, the current slide is highlighted and automatically scrolled to in the overview
panel.

rslidy also allows the user to change slides by modifying the URL. Adding #3 to an opened HTML slide
file URL (like demo.html#3) navigates to the third slide, for instance.

4.3.2 Slide Overviews

rslidy implements a Table of Contents and a thumbnail-based Slides Overview. These can be seen in Figure 4.2.
The Table of Contents contains a list of all slide titles (headings). These are automatically fetched from the

main HTML file. By selecting a title, the system navigates to the corresponding slide.
The new Slides Overview was created using the CSS3 properties transform: scale3d(x, y, z) and

transform-origin: 0px 0px 0px. The aspect ratio of every thumbnail image is calculated dynamically using
the aspect ratio of the browser window. It is recalculated when the size of the window changes during the
presentation.

4.3. SLIDES AND NAVIGATION 21

Figure 4.2: The navigation controls implemented in rslidy. On the left, the original Table of Contents can
be seen. On the right, the new thumbnail-based Slides Overview is shown. The current slide
is clearly highlighted in the overview panel.

Both overviews hide themselves after a slide has been selected by the user. This behaviour can be disabled
by changing rslidy’s settings found in the JavaScript file (see Section A.6).

Unlike former versions of rslidy, which used a hamburger icon, the new navigation controls are activated
using the buttons on the left side of rslidy’s status bar. Alternatively, the table of contents can be shown by
clicking on the number of the current slide, located on the right side of the status bar.

4.3.3 Incremental Lists

rslidy supports incremental lists. They are defined by adding the incremental class to the HTML ol or
ul elements. Incremental lists allow the user to reveal items one by one. To reveal the whole list at once,
Shift - Right Arrow can be pressed. A fully visible list can be hidden by pressing Shift - Left Arrow

key.

4.3.4 Status Bar

The status bar is always located at the bottom of the presentation. This is done by using CSS’s position: absolute

property. The position: fixed property could also be used, but causes flickering issues on iOS devices.
Besides the navigation buttons and the current slide’s number already mentioned, a menu button can be

found on the right side of the status bar. When activated, it shows a menu, which allows the user to toggle
the detection of motion gestures and the Low Light Mode. It also contains a button for a help section. By
clicking it, a dialog box is shown, which shortly explains the key bindings and how navigation in rslidy works.
Moreover, the status bar contains two links, which allow users to navigate without using a keyboard. These
links are hidden on devices with very small screens.

The right side of the status bar together with the opened menu is shown in Figure 4.3.

22 CHAPTER 4. THE NEW RSLIDY

Figure 4.3: rslidy’s menu contains checkboxes for toggling motion gestures, the Low Light Mode and the
help section.

4.3.5 Editing and Adding New Slides

Slides for the presentation can be edited using the main HTML file. All slides are stored in this file and use
the class slide to be correctly detected by rslidy. Slides can be created by adding new div elements for them
and are numbered automatically by rslidy. In terms of HTML classes used, the new version is fully compatible
with older versions of rslidy and with the original Slidy2, making it possible to use older slide decks with the
new rslidy.

4.4 Touch Events and Motion Gestures on Mobile Devices

Motion gestures on mobile devices have become an important interaction method in the last few years. Studies
have shown that over 80 percent of smart phone users would occasionally use them [Ruiz, Li and Lank, 2011]
when trying to complete a task.

rslidy detects both touch events and motion gestures by using various JavaScript events. Their listeners are
added to the corresponding elements in the addListeners() method called during rslidy’s initialisation.

The detection of all gestures described in this section can be customised by the user, for example to increase
or decrease the sensibility of the detection.

4.4.1 Swiping

Swiping means to hold down the finger on the screen while moving it and releasing it after movement. This
type of interaction allows users to navigate through the available slides on mobile devices, which do not have a
keyboard attached to them. Swiping to the left leads the user to the next slide, while swiping to the right leads
them to the previous one.

There are various third party libraries available, which add touch gesture support to a JavaScript project,
for example HammerJS [Tangelder, 2015]. They were not used with rslidy, instead a custom solution was
developed using the three relevant JavaScript events:

• touchstart, fired when a user starts touching the screen

• touchmove, repeatedly called while moving the finger while touching the screen

• touchend, fired when a users stops touching the screen

Monitoring the time between these events’ activations allows rslidy to detect swipe gestures made by the
user. By calculating the direction of the movement, rslidy distinguishes between right-to-left and left-to-right
swipes.

Swipe gestures rely on the events mentioned above. These are supported on all major mobile browsers and
also on some desktop browsers [Mozilla, 2015d].

4.5. LOW LIGHT MODE 23

4.4.2 Tilting

In addition to swiping gestures, users can tilt the device to the left and to the right in order to navigate to the
previous and next slide, respectively. rslidy detects this kind of gesture using JavaScript’s deviceorientation
event. It is supported on most mobile browsers, except for Internet Explorer Mobile and Opera Mobile [Mozilla,
2015b]. If tilt gestures are not desired by the user, they can be disabled using rslidy’s settings menu shown in
Figure 4.3.

In rslidy, tilting is implemented by calculating the time between orientation updates. The lower the intervals,
the higher the change rate of the orientation is. This rate can be described as the speed of tilting the device.
Using this method, slow or slight tilting is not recognised as an action done on purpose.

rslidy adjusts its calculation to the current orientation of the device itself. If the device is switched to
landscape mode, the detection is basically rotated by 90 degrees.

4.4.3 Shaking

While tilting means to rotate the device around one or more of its axis, shaking refers to the rapid movement
of a smart phone without necessarily rotating it. rslidy detects a user shaking the device using JavaScript’s
devicemotion event. Just like deviceorientation, this event is supported on most mobile browsers, with the
exception of Microsoft’s Internet Explorer Mobile and Opera Mobile [Mozilla, 2015a].

In rslidy, shaking the device causes the presentation to reset to the first slide. Similar to tilt gestures, there
is a certain threshold required for shake gestures to cause rslidy to react. This threshold can be customised by
the user. Shake gestures can also be turned off using rslidy’s settings menu shown in Figure 4.3.

4.5 Low Light Mode

The Low Light Mode is a new feature, which was not included in previous versions of rslidy. Its main advantage
is that darker colours can help to reduce eye strain when an interface is used in a dark environment [Few, 2012].

In rslidy, CSS filters are used, especially the filter: invert(x) property, in order to change the colours
of the whole presentation. Images and other graphical representations are not affected by the Low Light Mode
and keep their original appearance. The colours used for the dark representation of rslidy can be customised by
the user.

The CSS filter: invert(x) property is not supported by all browsers. By default, it is disabled on
Microsoft’s Edge browser, but can be activated by the user. On Microsoft’s Internet Explorer, it does not work
at all. Apart from these two web browsers, the Low Light Mode works on all other major desktop and mobile
browsers without any restrictions.

In Figure 4.4, rslidy’s appearance in its Low Light Mode is shown. For comparison, rslidy’s normal ap-
pearance is shown in Figure 4.5. The Low Light Mode can be toggled using rslidy’s settings menu shown in
Figure 4.3.

24 CHAPTER 4. THE NEW RSLIDY

Figure 4.4: In Low Light Mode, darker colours are used to reduce a user’s eye strain in darker environ-
ments.

Figure 4.5: rslidy’s normal appearance with the Low Light Mode disabled.

Chapter 5

Selected Details of the Implementation

5.1 Low Light Mode

Inverting the colours of all documents except for images does not always work when using SVG graphics. In
this case, the whole figure and also HTML’s figcaption elements have to be separately inverted as shown in
Listing 5.1. The switchElementsClass(elements, class) method is used to toggle the existence of a class
for a given list of HTML elements.

Another problem is to allow the user to customise the colours used during Low Light Mode. As the CSS’s
filter: invert(x) also inverts colours explicitly applied by stylesheets, the colours entered by the user have
to be inverted in order to keep them when inverted again by rslidy’s Low Light Mode implementation. This
means that the hexadecimal value of the inverted colour has to be manually calculated using the given colour
of every affected element. The JavaScript code responsible for this procedure is shown in Listing 5.2.

5.2 SVG Graphics on iOS

One of iOS’s compatibility problems is that the image tag cannot be used within SVG files together with a
Base64-encoded image. This would cause this very part of the SVG graphic to not appear on iOS devices,
regardless which browser is used. Therefore, a workaround had to be found. The solution is to embed existing
SVG elements using HTML’s object tag. The SVG image is now not rendered as a simple image any more,
but instead as a multimedia element, which works on iOS devices. The code used to change the tags is shown
in Listing 5.3.

This modification leads to a major change within the HTML code written by the user. For this reason, it is
turned off by default. It can be toggled by using the settings found in the JavaScript file described in Section
A.6. The corresponding method is only called on iOS devices. This means that tags are not changed on already
supported platforms.

25

26 CHAPTER 5. SELECTED DETAILS OF THE IMPLEMENTATION

1 // Invert images
2 var imgs = document . getElementsByTagName ("img") ;
3 t h i s . u t i l s . s w i t c h E l e m e n t s C l a s s (imgs , c l a s s _ c o l o r _ i n v e r t) ;
4
5 // Invert figures
6 var f i g u r e s = document . getElementsByTagName ("figure") ;
7 t h i s . u t i l s . s w i t c h E l e m e n t s C l a s s (f i g u r e s , c l a s s _ c o l o r _ i n v e r t) ;
8
9 // Invert figure captions

10 var f i g c a p t i o n s = document . getElementsByTagName ("figcaption") ;
11 t h i s . u t i l s . s w i t c h E l e m e n t s C l a s s (f i g c a p t i o n s , c l a s s _ c o l o r _ i n v e r t) ;

Listing 5.1: Code used to invert all images and figures again.

1 var c o l o r _ r g b = g e t C o m p u t e d S t y l e (e l e m e n t s [i]) . g e t P r o p e r t y V a l u e ("color") ;
2 var c o l o r _ h e x = "#" ;
3 var rgx = / \ d + / g ;
4 var match ;
5 whi le ((match = rgx . exec (c o l o r _ r g b)) != n u l l) {
6 var i n v e r t e d = 255 − match [0] ;
7 i f (i n v e r t e d < 16)
8 c o l o r _ h e x += "0" ;
9 c o l o r _ h e x += i n v e r t e d . t o S t r i n g (1 6) ;

10 }
11 e l e m e n t s [i] . s t y l e . c o l o r = c o l o r _ h e x ;

Listing 5.2: In Low Light Mode, colours chosen by the user have to be manually inverted in order to
stay the same after applying the CSS filters.

1 // Elements to consider
2 var i t e m s = document . q u e r y S e l e c t o r A l l (’.svg’) ;
3
4 // Change the tags
5 f o r (var i = 0 ; i < i t e m s . l e n g t h ; i ++) {
6 var i tem_new = ’<object style="display:table-cell;pointer-events:none;z-index:-10;"

class="svg" data="’ + i t e m s [i] . g e t A t t r i b u t e ("src") + ’" type="image/svg+xml
"></object>’ ;

7 i t e m s [i] . outerHTML = item_new ;
8 }

Listing 5.3: This listing shows how object tags can be added for SVG images on iOS devices.

Chapter 6

Future Work

In this chapter, possible future features of rslidy are discussed. A few of them are already implemented in
previous versions of rslidy or in other web-based presentation tools.

6.1 More Touch Events and Key Bindings

Currently, rslidy support only left and right swipes to navigate. In the future, additional touch events like double
taps could be used to show the navigation panel, for example. Moreover, Swiping up or down could be used to
skip incremental lists or multiple slides.

Compared to other web-based presentation tools mentioned in Chapter 3, rslidy supports only a small
amount of key-based actions. Further key bindings could be used to quickly toggle the navigation panel or
various settings like the Low Light Mode.

6.2 Remote Navigation using Mobile Devices

The first version of rslidy published in 2014 includes a WebSocket Remote Control possibility. With a server
set up and running, users can remotely control a presentation taking place on a certain device by using their
smart phone, for example.

This feature was implemented using the master-slave-principle. A master and multiple slaves are able to
connect to the server and whenever the master sends a command, the server forwards it to all slaves. This means
that even multiple presentation devices can be controlled with one smart phone acting as the master. A similar
feature is currently not implemented in the new version of rslidy, but could be developed in the future.

6.3 Slide Editor

To make rslidy even more user-friendly, an editor for slide contents could be included. This feature would allow
easier modifications of the slide deck when compared to editing the plain HTML file. Additionally, slide decks
could be quickly modified during the presentation without having to open another file.

As an alternative to a fully functional editor, a markup language like Markdown could be used [Gruber
and Swartz, 2004]. This solution is already implemented in other web-based presentation tools like S9 and
remark.js.

6.4 More Information during the Presentation

An indicator showing how much time the user has still left for their presentation was already implemented in
Slidy and Slidy2. Other solutions like remark.js also include this feature.

27

28 CHAPTER 6. FUTURE WORK

A similar option is not available in rslidy, but could be a useful feature for upcoming versions. The basic
timer in Slidy2 could even be improved in order to show the time for each slide instead of the total amount of
time for the whole presentation.

Another feature would be the possibility to add speaker notes to the presentation. They would be part of
specific slides and could be shown by the user whenever needed. This feature is included in google-slides, for
example.

Chapter 7

Concluding Remarks

Web-based presentation tools exist for many years now, but they still have trouble to completely replace con-
ventional software like Microsoft’s PowerPoint or Apple’s KeyNote. While being feature-rich, they often lack
important attributes, for example the compatibility between multiple platforms and the responsiveness on mo-
bile devices.

In this work, we learned how elevated a presentation tool based on HTML, CSS and pure JavaScript can
be. These technologies alone can be used to achieve a convincing final product. This shows that conducting
a quality presentation is not only possible with conventional computer software any more and by using web
technologies, every presentation tool can instantly be made cross-platform.

Apart from describing already existing solutions, rslidy, a new approach, was presented and explained in
detail. Based on the idea of the original Slidy2, it is a lightweight web tool and allows users to create their own
presentations. While developing rslidy, special attention was paid to its responsiveness across different devices
and screen resolutions. It also includes more features and is overall more user-friendly and adaptive than its
previous versions. Furthermore, some ideas for future improvements were shown and also briefly explained. By
implementing the features mentioned, rslidy could become even more elevated and competitive when compared
to other solutions.

In conclusion, we can say that web-based presentation tools are indeed a strong alternative to conventional
presentation software and more often than not the fastest solution when slide decks need to be made available
on many different devices.

29

30 CHAPTER 7. CONCLUDING REMARKS

Appendix A

User Guide

In this chapter, detailed instructions are given on how to use and customise the new version of rslidy. This
includes the adding of rslidy to an own HTML presentation and a description of the HTML file structure and
important class names. Moreover, all of rslidy’s settings are described. By changing them, the appearance as
well as the behaviour of the presentation can be altered to satisfy a user’s needs.

A.1 Extracting the rslidy Archive File

Following file structure can be found after having extracted the rslidy.zip archive:
rslidy.zip

css
normalise.css
reset.css
rslidy.css
rslidy-combined.min.css
slides-default.css

js
rslidy.js
rslidy.ts
rslidy.min.js

demo.html

The archive not only contains files needed by rslidy, but also additional files. They help the user to customise
their own copy of rslidy.

normalise.css and reset.css are not necessarily needed by rslidy, but contain normalisation rules like
margin: 0 for some HTML elements. The rslidy.css file is needed by rslidy in order to work. This file is
not intended to be modified by the user. Instead, the slides-default.css file should be used to add custom styles
to the presentation. However, if custom styles are not necessary, rslidy-combined.min.css can be used, which is
a minified version containing all other CSS files.

rslidy.js is the basic JavaScript file directly created by the TypeScript compiler. It is the large version, thus
not minified, and contains all comments from the original rslidy.ts. If code customisations are not needed by
the user, the rslidy.min.js file should be used, as it is the smallest and most portable version of rslidy.

The two HTML files contain a simple demo presentation (demo.html) and a help file also used by rslidy.
The demo presentation file can be removed without compromising the functionality of rslidy. An absolute
minimum version of rslidy without the user’s presentation would contain the files shown in Figure A.1.

31

32 APPENDIX A. USER GUIDE

rslidy
css

rslidy-combined.min.css
js

rslidy.min.js

Figure A.1: This figure shows the files needed for the absolute minimum version of rslidy.

1 < l i n k r e l =" s t y l e s h e e t " hre f =" c s s / r e s e t . c s s " / >
2 < l i n k r e l =" s t y l e s h e e t " hre f =" c s s / n o r m a l i s e . c s s " / >
3 < l i n k r e l =" s t y l e s h e e t " hre f =" c s s / r s l i d y . c s s " / >
4 < l i n k r e l =" s t y l e s h e e t " hre f =" c s s / s l i d e s −d e f a u l t . c s s " / >
5 < s c r i p t s r c =" j s / r s l i d y . j s " c h a r s e t =" u t f −8" type =" t e x t / j a v a s c r i p t ">< / s c r i p t >

Listing A.1: These commands are necessary to include rslidy.

A.2 Adding rslidy to a Project

After having prepared the files needed for rslidy and the presentation file itself, rslidy has to be added to the
HTML file. This can be done by using HTML’s link and script tags as shown in Listing A.1. Depending on
the user’s file structure, the location of the files might certainly be different.

A.3 The slide and titleslide Classes

It is possible to edit existing slides or to add new ones by editing a single HTML file. Slides are represented as
div elements with certain classes assigned to them. The HTML code used to create a slide together with its div
element and the slide class is shown in Listing A.2. Additionally, the class titleslide can be used together
with slide to mark the first slide of a presentation.

A.4 Using Incremental Lists

Similar to the original Slidy and Slidy2, the new version of rslidy also supports incremental list, allowing the
user to show list items one at a time. Incremental lists can be used adding the class incremental to an HTML
list element such as ol or ul as demonstrated in Listing A.3.

It is possible to use nested lists with multiple levels by adding list elements to li elements of other lists. In
this case, every list element needs to have its own incremental class added.

A.5 Customising the Appearance of the Presentation

If user-specific CSS rules are needed, they should be added to the slides-default.css file, which already contains
a very basic set of rules. One of the sections in this file defines the colours used for rslidy’s Low Light Mode
feature discussed in 4.5. These rules override the values obtained by inverting the original colours and thus
represent the final colours displayed in the presentation.

A.6 JavaScript Settings for the Presentation

Using the JavaScript file, many different settings of rslidy can be changed. This allows users to adjust the
presentation to their specific needs.

A.6. JAVASCRIPT SETTINGS FOR THE PRESENTATION 33

1 < div c l a s s =" s l i d e ">
2 <h1>Sample S l i d e < / h1>
3
4 <p>
5 Some c o n t e n t f o r t h e sample s l i d e .
6 < / p>
7
8 < / div >

Listing A.2: rslidy uses the class slide to mark slide content.

1 < div c l a s s =" s l i d e ">
2 <h1>Sample S l i d e wi th an I n c r e m e n t a l L i s t < / h1>
3
4 < ul c l a s s =" i n c r e m e n t a l ">
5 < l i > L i s t I t em 1< / l i >
6 < l i > L i s t I t em 2< / l i >>
7 < l i > L i s t I t em 3< / l i >
8 < / ul >
9

10 < / div >

Listing A.3: In rslidy, incremental lists can be created using the incremental class with ul elements.

A full list of available settings is shown in Table ??. All these settings can by found inside the rslidy.js file
and are located in the Rslidy() function used to initialize the Rslidy object. In the original rslidy.ts file, these
settings can be found inside the constructor method of the Rslidy class.

34 APPENDIX A. USER GUIDE

Variable Name Description
boolean close_menu_on_selection If true, the settings menu closes after having selected

an option.
boolean close_navigation_on_selection If true, the navigation panel is closed after having

selected a slide.
boolean start_in_low_light_mode If true, rslidy starts in Low Light Mode.
boolean block_slide_text_selection If true, text on slides cannot be selected.
boolean svg_fix_on_ios If true, object tags are added for SVG images when

using iOS devices.
float custom_aspect_ratio The aspect ratio for the thumbnail images in the nav-

igation panel. Values like 4:3 and 16:9 can be used.
If 0, the aspect ratio is dynamically calculated and
updated by rslidy.

int custom_width The width to calculate the custom aspect ratio. Only
used when custom_aspect_ratio is greater than 0.

float overview_slide_zoom Sets the zoom for the thumbnail images in the nav-
igation panel. Default is 1.0.

int doubletap_delay Maximum delay in ms between two taps to be recog-
nised as a double tap. Currently not used.

float min_slide_zoom The minimum zoom level (font size) of the content
area in em units. Default is 0.2.

float max_slide_zoom The maximum zoom level (font size) of the content
area in em units. Default is 3.0.

float zoom_step Defines for how many em units the zoom level of the
content area changes in each step. Default is 0.2.

float tilt_sensitivity The sensitivity used for tilt gestures. Higher sensit-
ivity means less tilting required. Default is 3.0.

float shake_sensitivity The sensitivity used for shake gestures. Higher sens-
itivity means less shaking required. Default is 1.0.

Table A.1: The settings for rslidy inside the JavaScript file.

Bibliography

Bang, Ole Petter [2015a]. Remark. 2015. http://remarkjs.com/ (cited on page 12).

Bang, Ole Petter [2015b]. Remark - Description. 2015. http://gnab.github.io/remark/#3 (cited on
page 12).

Bauer, Gerald [2008]. Slide Show (S9) - Versions. 2008. https://rubygems.org/gems/slideshow/
versions (cited on page 11).

Bauer, Gerald [2015a]. S6. 2015. https://github.com/slidekit/s6 (cited on page 11).

Bauer, Gerald [2015b]. Slide Show (S9). 2015. http://slideshow-s9.github.io/ (cited on page 11).

Champeon, Steven and Nick Finck [2003]. Inclusive Web Design For the Future with Progressive Enhancement.
2003. http://hesketh.com/publications/inclusive_web_design_for_the_future/ (cited
on page 4).

ECMA [2015]. ECMAScript 2015 Language Specification. Ecma International. 2015. http : / / ecma -
international.org/ecma-262/6.0/ (cited on page 4).

Few, Stephen [2012]. Black or White: What Color Works Best for the Background of a Screen? 2012. https:
//perceptualedge.com/blog/?p=1445 (cited on page 23).

Flanagan, David [2011]. JavaScript: The Definitive Guide: Activate Your Web Pages. 6th edition. O’Reilly
Media, 2011. ISBN 0596805527 (cited on page 4).

Foster, Aidan [2012]. Progressive Enhancement - A Technique For Building Future Friendly Websites. 2012.
http://responsivedesign.ca/blog/progressive- enhancement- a- technique- for-

building-future-friendly-websites (cited on page 4).

Google [2012]. google-slides. 2012. https://code.google.com/p/io-2012-slides/ (cited on page 8).

Gruber, John and Aaron Swartz [2004]. Markdown. 2004. http://daringfireball.net/projects/
markdown/ (cited on pages 11, 12, 27).

Grunt [2015]. Grunt - The JavaScript Task Runner. 2015. http://gruntjs.com/ (cited on page 17).

Hattab, Hakim El [2015a]. Reveal JS. 2015. http://hakim.se/projects/reveal-js (cited on page 13).

Hattab, Hakim El [2015b]. Zoom JS. 2015. https://github.com/hakimel/zoom.js (cited on page 14).

MacDonald, Matthew [2014]. HTML5: The Missing Manual. 2nd edition. O’Reilly Media, 2014. ISBN

1449363261 (cited on page 3).

Mahar, Steve, Ulku Yaylacicegi and Thomas N. Janicki [2008]. “Less is More When Developing PowerPoint
Animations”. In: The Proceedings of the Information Systems Education Conference 2008. 2008. http:
//isedj.org/7/82/ (cited on page 1).

Meyer, Eric [2004]. s5 - Release. 2004. http://meyerweb.com/eric/thoughts/2004/10/18/ (cited
on page 9).

35

http://remarkjs.com/
http://gnab.github.io/remark/#3
https://rubygems.org/gems/slideshow/versions
https://rubygems.org/gems/slideshow/versions
https://github.com/slidekit/s6
http://slideshow-s9.github.io/
http://hesketh.com/publications/inclusive_web_design_for_the_future/
http://ecma-international.org/ecma-262/6.0/
http://ecma-international.org/ecma-262/6.0/
https://perceptualedge.com/blog/?p=1445
https://perceptualedge.com/blog/?p=1445
http://www.amazon.com/exec/obidos/ASIN/0596805527/
http://responsivedesign.ca/blog/progressive-enhancement-a-technique-for-building-future-friendly-websites
http://responsivedesign.ca/blog/progressive-enhancement-a-technique-for-building-future-friendly-websites
https://code.google.com/p/io-2012-slides/
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://gruntjs.com/
http://hakim.se/projects/reveal-js
https://github.com/hakimel/zoom.js
http://www.amazon.com/exec/obidos/ASIN/1449363261/
http://isedj.org/7/82/
http://isedj.org/7/82/
http://meyerweb.com/eric/thoughts/2004/10/18/

36 BIBLIOGRAPHY

Meyer, Eric [2015]. s5. 2015. http://meyerweb.com/eric/tools/s5/ (cited on page 9).

Microsoft [2012]. TypeScript. 2012. http://typescriptlang.org/ (cited on page 4).

Mozilla [2015a]. DeviceMotionEvent. Mozilla Foundation. 2015. https://developer.mozilla.org/de/
docs/Web/API/DeviceMotionEvent#Browser_compatibility (cited on page 23).

Mozilla [2015b]. DeviceOrientationEvent. Mozilla Foundation. 2015. https://developer.mozilla.
org/de/docs/Web/API/DeviceOrientationEvent#Browser_compatibility (cited on page 23).

Mozilla [2015c]. JavaScript. Mozilla Foundation. 2015. https://developer.mozilla.org/en-US/
docs/Web/JavaScript (cited on page 4).

Mozilla [2015d]. Touch Events. Mozilla Foundation. 2015. https://developer.mozilla.org/en-
US/docs/Web/API/Touch_events#Browser_compatibility (cited on page 22).

Node.js Foundation [2015]. NodeJS. Node.js Foundation. 2015. https://nodejs.org/en/ (cited on
page 4).

Quaranto, Nick [2015]. RubyGems. 2015. https://rubygems.org/ (cited on page 12).

Raggett, Dave [2005]. HTML Slidy: Slide Shows in XHTML. 2005. http://w3.org/2005/03/slideshow.
html (cited on page 7).

Raggett, Dave [2006a]. HTML Slidy: Slide Shows in HTML and XHTML. 2006. http://w3.org/Talks/
Tools/Slidy2/ (cited on page 1).

Raggett, Dave [2006b]. “Slidy - a web based alternative to Microsoft PowerPoint”. In: Proceedings of XTech
2006. 2006. http://w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf (cited on pages 1,
7).

Ruiz, Jaime, Yang Li and Edward Lank [2011]. “User-Defined Motion Gestures for Mobile Interaction”. In:
CHI 2011. 2011. http://yangl.org/pdf/motiongestures-chi2011.pdf (cited on page 22).

Sagalaev, Ivan [2015]. highlight.js. 2015. https://highlightjs.org/ (cited on pages 13, 14).

Stoll, Martin [2015]. diascope. 2015. http://diascope.sourceforge.net/index.php (cited on
page 14).

Tangelder, Jorik [2015]. hammer.js. 2015. http://hammerjs.github.io/ (cited on pages 15, 22).

Tibbett, Rich [2015]. Full-Tilt. 2015. https://github.com/Full-Tilt/Full-Tilt (cited on page 15).

W3C [1992]. Basic HTTP as defined in 1992. World Wide Web Consortium. 1992. http://w3.org/
Protocols/HTTP/HTTP2.html (cited on page 3).

W3C [1995]. Cascading Style Sheets, level 1. World Wide Web Consortium. 1995. http://w3.org/TR/WD-
css1-951117.html (cited on page 3).

W3C [2012]. A Short History of JavaScript. World Wide Web Consortium. 2012. http : / / w3 . org /
community/webed/wiki/A_Short_History_of_JavaScript (cited on page 4).

W3C [2015a]. CSS Snapshot 2015. World Wide Web Consortium. 2015. http://w3.org/TR/css3-
roadmap/ (cited on page 3).

W3C [2015b]. CSS3 transform Property. World Wide Web Consortium. 2015. http://w3schools.com/
cssref/css3_pr_transform.asp (cited on page 3).

W3C [2015c]. HTML5 Video. World Wide Web Consortium. 2015. http://w3schools.com/html/html5_
video.asp (cited on page 14).

http://meyerweb.com/eric/tools/s5/
http://typescriptlang.org/
https://developer.mozilla.org/de/docs/Web/API/DeviceMotionEvent#Browser_compatibility
https://developer.mozilla.org/de/docs/Web/API/DeviceMotionEvent#Browser_compatibility
https://developer.mozilla.org/de/docs/Web/API/DeviceOrientationEvent#Browser_compatibility
https://developer.mozilla.org/de/docs/Web/API/DeviceOrientationEvent#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events#Browser_compatibility
https://nodejs.org/en/
https://rubygems.org/
http://w3.org/2005/03/slideshow.html
http://w3.org/2005/03/slideshow.html
http://w3.org/Talks/Tools/Slidy2/
http://w3.org/Talks/Tools/Slidy2/
http://w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf
http://yangl.org/pdf/motiongestures-chi2011.pdf
https://highlightjs.org/
http://diascope.sourceforge.net/index.php
http://hammerjs.github.io/
https://github.com/Full-Tilt/Full-Tilt
http://w3.org/Protocols/HTTP/HTTP2.html
http://w3.org/Protocols/HTTP/HTTP2.html
http://w3.org/TR/WD-css1-951117.html
http://w3.org/TR/WD-css1-951117.html
http://w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://w3.org/community/webed/wiki/A_Short_History_of_JavaScript
http://w3.org/TR/css3-roadmap/
http://w3.org/TR/css3-roadmap/
http://w3schools.com/cssref/css3_pr_transform.asp
http://w3schools.com/cssref/css3_pr_transform.asp
http://w3schools.com/html/html5_video.asp
http://w3schools.com/html/html5_video.asp

BIBLIOGRAPHY 37

W3Schools [2015]. CSS Responsive Web Design. 2015. http://w3schools.com/css/css_responsive_
intro.asp (cited on page 5).

http://w3schools.com/css/css_responsive_intro.asp
http://w3schools.com/css/css_responsive_intro.asp

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Web-Based Presentation Slides
	1.2 Motivation
	1.3 rslidy's Framework

	2 Front-End Web Technologies
	2.1 HTML5
	2.2 CSS3
	2.3 JavaScript
	2.4 TypeScript
	2.5 Progressive Enhancement
	2.6 Responsive Web Design

	3 Presentation Slides in HTML
	3.1 Slidy and Slidy2
	3.1.1 Slidy2 Features
	3.1.2 Slidy2 Implementation Details

	3.2 google-slides from Google I/O
	3.2.1 google-slides Features
	3.2.2 google-slides Implementation Details

	3.3 S5
	3.3.1 S5 Features
	3.3.2 S5 Implementation Details

	3.4 S9 (Slide Show)
	3.4.1 S9 Features
	3.4.2 S9 Implementation Details

	3.5 remark.js
	3.5.1 remark.js Features
	3.5.2 remark.js Implementation Details

	3.6 reveal.js
	3.6.1 reveal.js Features
	3.6.2 reveal.js Implementation Details

	3.7 diascope
	3.7.1 diascope Features
	3.7.2 diascope Implementation Details

	3.8 The First rslidy and its Successor rslidy2

	4 The New rslidy
	4.1 Architecture of rslidy
	4.1.1 Files
	4.1.2 Initialisation
	4.1.3 Styling and DOM Manipulation
	4.1.4 Key and Mouse Events and Listeners
	4.1.5 Navigation Methods
	4.1.6 The Utils class

	4.2 Cross-Platform Compatibility
	4.2.1 The Stylesheet
	4.2.2 Web Browsers and Platforms
	4.2.3 Changing the Size of the Presentation
	4.2.4 Feature Sniffing

	4.3 Slides and Navigation
	4.3.1 Slides Navigation
	4.3.2 Slide Overviews
	4.3.3 Incremental Lists
	4.3.4 Status Bar
	4.3.5 Editing and Adding New Slides

	4.4 Touch Events and Motion Gestures on Mobile Devices
	4.4.1 Swiping
	4.4.2 Tilting
	4.4.3 Shaking

	4.5 Low Light Mode

	5 Selected Details of the Implementation
	5.1 Low Light Mode
	5.2 SVG Graphics on iOS

	6 Future Work
	6.1 More Touch Events and Key Bindings
	6.2 Remote Navigation using Mobile Devices
	6.3 Slide Editor
	6.4 More Information during the Presentation

	7 Concluding Remarks
	A User Guide
	A.1 Extracting the rslidy Archive File
	A.2 Adding rslidy to a Project
	A.3 The slide and titleslide Classes
	A.4 Using Incremental Lists
	A.5 Customising the Appearance of the Presentation
	A.6 JavaScript Settings for the Presentation

	Bibliography

