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Abstract

In recent years, data analysts have been confronted by increasing amounts of data, often in the form of
multivariate datasets. Multivariate datasets can be thought of as a table, where dimensions are columns,
and records are rows. Machine learning and data mining algorithms can help an analyst to build ma-
chine learning (ML) models to find structures in a dataset algorithmically. Alternatively, visualisation
techniques such as scatterplot, scatterplot matrix, and parallel coordinates can help an analyst explore
and find structures in a dataset visually. Although extensive research has been done around building and
visualising an ML model, there is less research linking ML models and visualisations through human-
centred interactions. Such a connection has the potential to help an analyst build better ML models
by interactively steering the process. However, designing and evaluating such interaction techniques is
challenging.

In this thesis, visual analytics techniques are proposed, which focus on building and modifying an ML
model of a multivariate dataset, using machine learning, visualisation, and interactions. Moreover, the
use of novel interaction modalities and devices such as large multi-touch displays, handheld devices, and
eye-trackers is explored.

As a first step, a novel approach for selecting, searching for, and comparing local patterns within
multivariate datasets using scatterplots is presented. An analyst can select a part of a scatterplot from a
scatterplot matrix, and search for similar patterns using both model-based (ML regression) descriptors
and shape-based descriptors. A relevance feedback module enables the analyst to improve the regression
analysis and find relevant patterns more effectively.

The second part of the thesis goes beyond simple interaction and exploration using an ML model and
focuses on ML model creation and modification. Specifically, an interactive visual labelling technique
is presented, which allows an analyst to build and interactively improve an (ML classification) model
for multivariate datasets. The technique combines linked visualisations, clustering, and active learning
to help an analyst interactively label a multivariate dataset. In the third step, a user study was conduc-
ted which showed that such an interactive labelling technique could surpass common active learning
algorithms for building an effective ML model.

Finally, the fourth part of the thesis explores several novel interaction modalities. It is shown how large
multi-touch displays are effective for collaborative analysis of scatterplots. Extending these interactions,
analysts can use a secondary handheld device to interact with linked-view information visualisation ap-
plication to label multivariate datasets. In addition, user eye gaze interaction can be garnered by the
system to help re-arrange the axes in a parallel coordinates visualisation.

In summary, this thesis uses human-centred interactions to bridge the gap between ML techniques and
visualisation techniques. The thesis presents how to (1) interactively search and explore local regression
models in a scatterplot space, (2) interactively build and improve an ML model of a multivariate dataset
by linked visualisations, clustering, and active learning, and (3) use eye-tracking and multi-touch displays
to investigate regression ML models collaboratively, and use eye gaze as an input for interaction with
visualisations of a multivariate dataset.
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Chapter 1

Introduction

“The tale of me and my beloved shall not have a closure;
After all, anything without a beginning won’t have an end.”

[ Hafez, Persian poet, 1315-1390. ]

With the advent of new technologies for data gathering and storage, analysts are facing a large amount
of data that cannot be processed or analysed with traditional tools. Information Visualisation (InfoVis)
and Machine Learning (ML) [Samuel 1959] are becoming two pillars to empower the analyst exploring
data and making crucial decisions. Despite advances in both fields, there is a gap between these two
disciplines that is yet to be addressed. InfoVis relies mainly on the power of humans’ brain, and ML on
the computational ability of machines. Therefore, a successful combination of these two disciplines will
unravel complex problems.

1.1 Information Visualisation
Visual data analysis by the help of information visualisation has become a key area in computer sci-
ence and an established approach to empower domain experts. Information Visualisation is “the use
of computer-supported, interactive, visual representations of abstract data to amplify cognition” [Card
et al. 1999]. Keim et al. [2008] define Visual Analytics (VA) as “the science of analytical reasoning
facilitated by interactive visual interfaces”. VA considers approaches and systems to help data ana-
lysts explore and make sense of large, complex datasets, often in a context of decision making and to
find unknown patterns. Visual analytics systems combine appropriate approaches from, among oth-
ers, InfoVis, Human-Computer Interaction, Data Analysis/Data Mining, User Evaluation, and Machine
Learning. The applications of VA are vast, including but not limited to multivariate data exploration
on scatterplots [Shao, Mahajan et al. 2017], interactive labelling [Bernard, Zeppelzauer, Sedlmair et al.
2018], and subspace search [Tatu et al. 2012].

InfoVis techniques should be adapted according to data types. For the particular case of multivari-
ate data, i.e. tabular data having a large number (n) of dimensions and (m) of data records, multiple
linked views visualisation has become popular. Multiple linked views are often used to gain a better
understanding of a high-dimensional dataset. Such views are usually connected by techniques such as
brushing or combined navigation [Roberts 2005]. Among possible views for representing multivariate
data are scatterplot, SPLOM, and parallel coordinates.

Scatterplots are bivariate projections of pairs of dimensions. For a multivariate data space of n di-
mensions, n2 pairwise scatterplots are required to completely visualise the space (n2/2 if transposed
plots are eliminated). A matrix of scatterplots representing every pairwise combination of plots is called

1
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Figure 1.1: The visualisation pipeline (adapted from [Card et al. 1999]).

a SPLOM. The parallel coordinates visualisation shows the dimensions of a dataset as parallel vertical
axes and its records as horizontal polylines [Inselberg 1985]. Parallel coordinates provide a concise over-
view of the entire dataset and are suitable for exploring correlations between neighbouring dimensions.
A parallel coordinates plot has been shown to outperform individual scatterplots when the task requires
interaction with more than two dimensions [Netzel et al. 2017].

Regardless of representation techniques, InfoVis is not complete without interaction. Carl et al. [Card
et al. 1999] defines visualisation as the “mapping of data to a visual form that supports human interaction
in a workplace for visual sense-making”. Figure 1.1 shows the visualisation pipeline, which starts with
raw data and continues toward views. Through interaction, the user can connect to this pipeline and
explore the data.

The medium of interaction plays an essential role. InfoVis techniques should be tailored for different
displays and interaction devices. The concept of interaction in InfoVis and VA has a long history [B.
Lee et al. 2012]. Nevertheless, novel device and display technologies, and novel multimodal interaction
devices [B. Lee et al. 2018] including gesture recognition, eye tracking, or data physicalisation offer even
more possibilities for InfoVis.

1.2 Machine Learning and Visual Analytics
As the ability to extract and store data significantly increased over recent years, VA needs to rely on the
computational power of machines. ML involves algorithms which improve automatically through exper-
ience. ML algorithms build a mathematical model (called an ML model) based on a training dataset of
sample data records, in order to make predictions or decisions about future data records. ML techniques
can be grouped into supervised, unsupervised, and reinforcement learning methods.

Supervised ML algorithms build an ML model based on a fully labelled training dataset, where both
the input records and desired outcomes are fully specified in advance. The two most important supervised
ML models are regression models and classification models [Nilsson 1965]. For a multivariate dataset,
such an ML model can be used to predict the outcome for a new record. For example, consider a
multivariate dataset consisting of age and weight as input, and height as output. With a proper ML
model, the computer can predict the height of a new record, after receiving age and weight as inputs.

Unsupervised ML techniques are applied to unlabelled datasets. Clustering [Wenskovitch et al. 2018]
is the prominent example of an unsupervised ML technique. Clustering techniques are useful for finding
similar records within a multivariate dataset. The instances in each group will get the same label, and
thus an ML model is created.

Figure 1.2 shows the visual analytics pipeline defined by Keim et al. [2008]. Models (in this thesis,
ML models) can be created from data using data mining techniques. Visualisations can foster the ML
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Figure 1.2: Visual analytics pipeline (adapted from [Keim et al. 2008]).

model creation, and the ML model can be visualised for further exploration.

For ML techniques, creating a model with high accuracy is the first and the most important step.
Supervised algorithms use a set of labelled data, and unsupervised algorithms use a set of unlabelled
data to build a model. In the traditional approach, analysts label as much data as possible to build an
ML model with high accuracy. When the number of classes and the size of dataset increases, the task
of labelling can become extraordinarily tedious and time-consuming. Therefore, it is important to label
the data instances that have the highest impact on the accuracy of the model. Active Learning (AL)
techniques help the analyst to label instances that have the highest impact on the accuracy of the model
incrementally [Settles 2012].

Active Learning strategies interactively collect new labelled records by judiciously asking for addi-
tional input from the user. To make the process more effective and efficient, it is crucial for the system to
propose records for interactive labelling wisely, choosing those records which are most likely to improve
the underlying ML model. Figure 1.3 shows the cycle of active learning, in which the human annotator
label instances that are selected by the algorithm to improve the ML model.

There are several occasions that ML algorithms can benefit from InfoVis. Quality assurance, building
an ML model, and parameter optimisation are among some of them. The user can quickly check the
quality of data and the ML model by visual inspection. In the case of multivariate data and multiple
linked views, instances that belong to the same category are visually closer to each other. The analyst
can further utilise the visual information to label instances. This process is called visual labelling. Visual
labelling is specifically useful for building an ML model with a limited number of instances. InfoVis
can help the analyst to tune parameters of an ML algorithm. While parameters of ML algorithms can be
automatically defined, the user should be able to control them interactively.

Apart from visual inspection and parameter optimisation for ML, the focus of this thesis is on user
interaction with visualisation for building and modifying the ML model. For the interaction part, both
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Figure 1.3: Active learning cycle (adapted from [Yu et al. 2015]).

traditional interactions such as mouse and keyboard, and novel interaction devices such as eye-trackers,
and multi-touch displays are investigated. Moreover, several VA techniques are presented to build ML
models more effectively in comparison to traditional automatic data mining and machine learning al-
gorithms.

1.3 Research Questions
In this thesis, four research questions and corresponding hypotheses are formed and answered. The
common goal of all questions is the role of interaction in VA for building and improving an ML model.

Research Question 1 (RQ1): How to use VA to find structures in an ML model?

Research Question 2 (RQ2): How to use VA to build an ML model?

Research Question 3 (RQ3): How to compare VA techniques with traditional automated algorithms
for building ML models?

Research Question 4 (RQ4): How to use non-traditional interactions to improving the building and
exploration of an ML model and to foster collaboration in teams?

Analysts face a tremendous amount of data, especially when it comes to multivariate datasets. To
explore these datasets, they often use scatterplots. Although scatterplots are effective for visualising
multivariate datasets [Sarikaya and Gleicher 2018], further interaction techniques are needed to find
and visualise structures in the ML model created from the dataset. Therefore, RQ1 was formulated to
investigate the suitability of common multivariate data visualisation techniques for finding structures in
ML models. Specifically, in Chapter 3, a pipeline for finding local patterns in a SPLOM using regression
models is proposed.

To go beyond finding structures in a finished ML model, RQ2 looks at VA techniques which can sup-
port an analyst to build and improve the ML model interactively. Chapters 4 and 5 consider classification
models and show how a combination of VA and ML can surpass active learning algorithms for labelling
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a multivariate dataset (RQ3).

Finally, Chapter 6 addresses RQ4. Firstly, it is shown how large multi-touch displays and regression
analysis can be used for collaborative analysis of scatterplots. Secondly, by linking a handheld device to
large displays, the collaboration concept is extended from two analysts to a small group. The last part of
Chapter 6, explores the use of gaze information for ordering axes in a parallel coordinates plot.

1.4 Contributions
The main contributions of this thesis are described in Chapters 3, 4, 5, and 6.

1.4.1 Local Scatterplot Patterns (Chapter 3)

Analysts often use visualisation techniques like a scatterplot matrix (SPLOM) to explore multivariate
datasets. The scatterplots of a SPLOM can help to identify and compare two-dimensional global patterns.
However, local patterns, which might only exist within subsets of records, are typically much harder to
identify and may go unnoticed among larger sets of plots in a SPLOM. Chapter 3 explores the notion of
local patterns and presents a novel approach to visually select, search for, and compare local patterns in
a multivariate dataset. Regression models are used to define model-based descriptors for local regions in
scatterplots. Together with shape-based pattern descriptors, these are used to automatically compare local
regions in scatterplots and assist in the discovery of similar local patterns. Mechanisms are provided to
assess the level of similarity between local patterns and to rank similar patterns effectively. Moreover, a
relevance feedback module is used to suggest potentially relevant local patterns to the user. The approach
has been implemented in an interactive tool and demonstrated with two real-world datasets and use cases.
It supports the discovery of potentially useful information such as clusters, functional dependencies
between variables, and statistical relationships in subsets of data records and dimensions.

The work presented in Chapter 3 is based on [Chegini, Shao, Gregor et al. 2018].

Contributors In the aforementioned article, Lin Shao contributed to the related work section. Robert
Gregor helped with the formulation of the recommender system. Dirk Lehmann prepared a draft for the
introduction section. Dirk Lehmann, Keith Andrews, and Tobias Schreck contributed to the definition of
underlying research questions and revised and finalised the manuscript.

1.4.2 Interactive Visual Labelling of Multivariate Datasets (Chapter 4)

Supervised machine learning techniques require labelled multivariate training datasets. Many approaches
address the issue of unlabelled datasets by tightly coupling machine learning algorithms with interactive
visualisations. Using appropriate techniques, analysts can play an active role in a highly interactive and
iterative machine learning process to label the dataset and create meaningful partitions. While this prin-
ciple has been implemented either for unsupervised, semi-supervised, or supervised machine learning
tasks, the combination of all three methodologies remains challenging.

In Chapter 4, a visual analytics approach is presented which combines a variety of machine learning
capabilities for building a classification model with four linked visualisation views, all integrated within
the mVis (multivariate Visualiser) system. The available palette of techniques allows an analyst to per-
form exploratory data analysis on a multivariate dataset and divide it into meaningful labelled partitions,
from which a classifier can be built. In the workflow, the analyst can label interesting patterns or outliers
in a semi-supervised process supported by active learning. Once a dataset has been interactively labelled,
the analyst can continue the workflow with supervised machine learning to assess to what degree the sub-
sequent classifier has effectively learned the concepts expressed in the labelled training dataset. Using
a novel technique called automatic dimension selection, interactions the analyst had with dimensions of
the multivariate dataset are used to steer the machine learning algorithms.
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A real-world football dataset is used to show the utility of mVis for a series of analysis and labelling
tasks, from initial labelling through iterations of data exploration, clustering, classification, and active
learning to refine the named partitions, to finally producing a high-quality labelled training dataset suit-
able for training a classifier. The tool empowers the analyst with interactive visualisations including
scatterplots, parallel coordinates, similarity maps for records, and a new similarity map for partitions.

The work presented in Chapter 4 is based on [Chegini, Bernard, Berger et al. 2019], and [Chegini,
Bernard, Shao et al. 2019].

Contributors In the aforementioned publications, Jürgen Bernard wrote the draft of the introduction
section. Philip Berger helped to shape and write the use case study. Jürgen Bernard, Keith Andrews, and
Tobias Schreck contributed to the definition of underlying research questions. Keith Andrews, Tobias
Schreck, and Alexei Sourin revised and finalised the manuscript.

1.4.3 Active Learning Versus Interactive Labelling (Chapter 5)

Methods from supervised machine learning allow the classification of new data automatically and are
tremendously helpful for data analysis. The quality of supervised learning depends not only on the type
of algorithm used but, importantly, also on the quality of the labelled dataset used to train the classifier.
Labelling instances in a training dataset is often done manually, relying on selections and annotations by
expert analysts, and is often a tedious and time-consuming process.

Active learning algorithms can automatically determine a subset of data instances for which labels
would provide useful input to the learning process. Interactive visual labelling techniques are a promising
alternative, providing effective visual overviews from which an analyst can simultaneously explore data
records and select items to a label. By putting the analyst in the loop, higher accuracy can be achieved
in the resulting classifier. While initial results of interactive visual labelling techniques are promising in
the sense that user labelling can improve supervised learning, many aspects of these techniques are still
largely unexplored.

Chapter 5 presents a study conducted using the mVis tool to compare three interactive visualisations
(similarity map, SPLOM with scatterplot, and parallel coordinates) with each other and with active learn-
ing for the purpose of labelling a multivariate dataset. The results show that all three interactive visual
labelling techniques surpass active learning algorithms in terms of classifier accuracy and that users sub-
jectively prefer the similarity map over SPLOM with scatterplot and parallel coordinates for labelling.
Furthermore, users employed different labelling strategies depending on the visualisation being used.

The work presented in Chapter 5 is based on [Chegini et al. 2020].

Contributors In the aforementioned article, Jürgen Bernard designed the study. Fatemeh Chegini
drafted the manuscript. Jian Cui helped to conduct the experiment and data processing. Alexei Sourin,
Keith Andrews, and Tobias Schreck contributed to the definition of the underlying research questions,
and revised and finalised the manuscript.

1.4.4 Multimodal Interaction for Data Analysis (Chapter 6)

Current advances in human-computer interaction introduce novel modalities such as eye-gaze, speech,
and multi-touch interfaces. These input modalities bring new opportunities to design visual analytics
techniques for multivariate data interaction. On the other hand, machine learning techniques can help to
perform tasks that are currently done manually by analysts. Combining new interaction methods with
state-of-the-art machine learning algorithms brings challenges that are yet to be solved. The focus of
Chapter 6 is on using novel interaction modalities such as multi-touch interfaces and eye-gaze together
with machine learning algorithms to improve the exploration of patterns, especially in scatterplots. This
combination creates interactive visual systems and allows the analyst to explore multivariate datasets
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more effectively. Chapter 6 is based on [Chegini et al. 2017], [Chegini, Shao, K. Andrews and Schreck
2018], [Chegini, K. Andrews et al. 2019b], and [Chegini, K. Andrews et al. 2019a].

Contributors In [Chegini et al. 2017], Lin Shao provided the regression lens technique that later was
further developed for the paper. Dirk Lehmann wrote the draft ot the introduction. Dirk Lehmann,
Keith Andrews, and Tobias Schreck contributed to the definition of the underlying research questions,
and revised and finalised the manuscript. Alexei Sourin, Keith Andrews, and Tobias Schreck had the
same role in [Chegini, Shao, K. Andrews and Schreck 2018], [Chegini, K. Andrews et al. 2019b], and
[Chegini, K. Andrews et al. 2019a].

1.5 List of Abbreviations
Table 1.1 shows common terms that are used in the thesis together with their abbreviations.

Abbreviation Term

mVis multivariate Visualiser
InfoVis Information Visualisation
VA Visual Analytics
SPLOM Scatterplot Matrix
IVL Interactive Visual Labelling
AL Active Learning
ML Machine Learning

Table 1.1: Abbreviations used in the thesis.
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Chapter 2

Related Work

“Being wise won’t turn the wheel of cosmos in your favour.”

[ Khayyam, Persian mathematician and poet, 1048–1131. ]

The first step for the research is to study related work and find the gap between state of the art technolo-
gies with real-world problems. This chapter gives an overview of visual data analysis, and its application
for scatterplot exploration, interactive visual labelling, and multimodal interaction.

2.1 Scatterplot Exploration
The approach described in Chapter 3 is related to several research areas of scatterplot exploration. The
three most important directions which influenced the work in Chapter 3 are local scatterplot segmenta-
tion, visual retrieval techniques, and visualisation of scatterplot patterns.

2.1.1 Scatterplot Segmentation

In recent years, the segmentation of local patterns has become an accepted and even essential part of
data analysis in many fields, including genome research [Eisen et al. 1998], trajectory analysis [Mann
et al. 2002], and image processing [Friedman and Russell 1997]. A pattern can be defined as a set of
records in a scatterplot that is contained inside a bounding box. A global pattern consists of all records
in a scatterplot, whereas a local pattern consists of a subset of records.

Data scientists often use data mining techniques in combination with information visualisation to
present extracted patterns visually for human perception. Mayorga and Gleicher [2013] describe an
automatic abstraction approach which groups dense data points to reveal the relationship between data
subgroups. Shao et al. [2016] extracted local scatterplot motifs to create a visual overview of frequent
patterns, which was then used to rank scatterplot views based on an adapted TF-IDF algorithm from
information retrieval. The idea was to automatically determine weights of interest for a pattern, by
comparing their occurrence frequencies within and among scatterplots. Another approach uses sensitivity
coefficients from flow field analysis to highlight the local variation of one variable in relation to another
[Chan et al. 2010]. Chen et al. [2014] used a hierarchical multi-class sampling technique to create
new visual abstraction schemes for scatterplot visualisations. Sedlmair, Tatu et al. [2012] proposed a
taxonomy of visual cluster separation factors in scatterplots and a data-driven framework for evaluating
visual quality measures [Sedlmair et al. 2015].

The technique described in Chapter 3 uses a sliding-window approach for segmentation, which com-
pares a query against many possible matching candidate positions and areas, hence implicitly and heur-
istically segmenting the data.

9
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2.1.2 Search Techniques for Scatterplot Retrieval

Another essential part of the work in this thesis is the description and retrieval of scatterplot patterns.
This research topic has been extensively investigated and addressed in recent works. Some of the pi-
oneering work includes the Scagnostics approach by Wilkinson et al. [2005], which characterises 2D
point distributions in a multidimensional Euclidean space using graph-theoretic measures. The approach
can be used to search for patterns based on density, skewness, shape, outliers, and texture [Matute et al.
2018]. Similar approaches were developed with the aim of finding similar patterns in other application
domains such as time series or image retrieval [Nhon et al. 2013; Nhon and Wilkinson 2014].

Scherer et al. [2011] introduced a goodness-of-fit approach based on regression models to find func-
tional dependencies between pairs of variables in a dataset. To search for patterns of interest, the user
can either enter the query directly as a formula or sketch a scatterplot. Scherer et al. [2013] extended
the approach to compare sets of scatterplots based on a bag-of-words model derived from scatterplot
descriptors. Scherer et al. [2012] compared scatterplot descriptors for effectiveness in finding globally
similar scatterplots based on a defined ground truth dataset. Shao et al. [2014] considered image-based
features for sketch-based search in scatterplot data, including real-time feature extraction of the sketch.

Interesting work also exists to automatically detect a pattern in higher-dimensional data spaces. For
instance, Tatu et al. [2012] introduced a subspace search algorithm which suggests a set of subspaces of
interest.

2.1.3 Visualisation of Local Patterns

Various visual approaches have been proposed to present local properties in a scatterplot. Yates et al.
[2014] described an enhanced SPLOM representation called Glyph SPLOM, which links heatmap prop-
erties to a SPLOM. Instead of showing all single scatterplots, it uses glyphs to visually encode similarity
features based on the occupancy of the scatterplot quadrants. The Regression Lens [Shao, Mahajan et al.
2017] is an example of how local properties of a scatterplot can be displayed interactively. Users can
apply an interactive regression analysis on a local portion of the data and immediately see the best fitting
regression model on the plot. Eisemann et al. [2014] describe interactive visualisation of distinct patterns
of data within a given scatterplot (a hierarchy of localised scatterplots), which allows the user to explore
dense areas in a scatterplot. In Chapter 3, a combination of these approaches is used to enhance the
visualisation of local patterns and facilitate the exploration of the dataset.

There are two essential aspects when visually analysing local patterns, namely, visualising and ag-
gregating local patterns, and supporting visual comparison between them. Schreck and Panse [2007]
used class labels to group data points in a scatterplot, and show properties of the contained points using
aggregation by bounding boxes, circles or convex hulls. Also, colour or blur was used to convey prop-
erties of the groups. Tominski et al. [2012] suggested three visual comparison methods based on the
natural behaviour of users when comparing charts: side-by-side, shine through, and folding interaction.
Gleicher et al. [2011] argued that since comparing complex objects is difficult, a promising strategy is
the abstraction of complexity. They presented three types of comparative visualisation: juxtaposition,
superposition, and explicit encoding.

The work described in Chapter 3 uses all three approaches to build a novel technique for finding local
patterns in scatterplots spaces.

2.1.4 Delineation of the Approach and Novelty in Chapter 3

The work described in Chapter 3 differs in that the query is selection-based instead of sketch-based and
the search algorithm combines both model-based and shape-based descriptors to specifically address
local patterns. Moreover, the user can select the most relevant matches to further refine the search query.
In Chapter 3, it is explained how by exploring the scatterplot space using visual analytics and feedback
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Visual Clustering Clustering Classification Active Learning

ML Type Unsupervised Unsupervised Supervised Semi-Supervised

Existing Labels Not Required Not Required Required Required

Records to Label Chosen by user.
All unlabelled

records.

Unlabelled records
closer than a

threshold to a label.

Specific number
of records

chosen strategically.

Creates Partitions By User Yes No No

Algorithms PCA, MDS, t-SNE
K-means,

Hierarchical
Random Forest Random Forest

Triggered By User User User System

Table 2.1: Techniques which support interactive labelling of records.

loop, the analyst finds relationships between variables locally that are unknown to him. Without the
technique described in this thesis, if the features of the dataset are unknown, the current state of the art
tools cannot find these patterns within a reasonable time frame.

2.2 Interactive Visual Labelling
VA applications benefit from both unsupervised and supervised Machine Learning (ML) algorithms to
support data exploration and analytical reasoning [Endert et al. 2018]. Table 2.1 gives an overview of
some of the techniques which support interactive labelling. Unsupervised machine learning techniques
can be applied to unlabelled datasets, since they do not require any training data. For example, clustering
techniques [Wenskovitch et al. 2018] can be used to find groupings of similar records within a dataset.
Exploratory information visualisations can be used to visually cluster (and then select) records according
to their similarity or dissimilarity, since similar records are typically closer together in the visualisation.
Semi-supervised ML techniques [Settles 2012] require at least some labelled data records before they can
be used. In active learning, some labelled data records are provided, and the system interactively collects
new examples through additional input from the user. Supervised ML techniques such as classification
[Choo et al. 2010] require a proper training set of labelled records.

2.2.1 Visual Clustering

Exploratory information visualisations can be used as interactive interfaces to select (groups of) similar
records or to identify and select outliers. Scatterplots visualise records along two chosen dimensions.
Records which are similar (in those two dimensions) are plotted close together. Dimensionality reduction
and projection methods can be used to generate a similarity map, which visually infers a clustering
by spatial proximity. Records closer together in the projected similarity map are more similar to one
another in the high-dimensional space [Sacha, Zhang et al. 2017]. In parallel coordinates [Inselberg
1985], similar records are represented by polylines which follow similar paths. It is also possible to filter
records by ranges on each dimension.

Cluster Sculptor [Bruneau et al. 2015] is an interactive clustering system which allows the user to
update the cluster labels of a dataset iteratively. The system relies on a t-SNE projection view, label
diffusion, and dissimilarity transform techniques. H. Lee et al. [2012] built a system called iVisClustering
based on latent Dirichlet allocation (LDA), which helps the user to perform clustering with interactive
visualisation, including parallel coordinates and scatterplots. RCLens [Lin et al. 2017] supports the
identification and exploration of rare categories (minority classes), utilising an active learning algorithm
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to help the analyst iteratively finds rare categories within the dataset. In Chapter 4, interactive clustering
is used to guide the analyst in finding some preliminary structure in the dataset.

2.2.2 Clustering

Classic clustering techniques such as k-means [Lloyd 1982] and hierarchical clustering [Karypis et al.
1999] are used to form groups (partitions) of records according to their similarity. The result of these
clustering algorithms can be visually inspected. In early work, gCluto [Rasmussen and Karypis 2004]
allowed an analyst to visually inspect clusters created by running multiple clustering techniques while
tuning the parameters. Nam et al. [2007] proposed a technique allowing analysts to tune the parameters
of clustering algorithms interactively to find suitable clusters based on the user’s needs. The technique
was proposed and tested on high-dimensional datasets. Later, Andrienko et al. [2009] suggested a general
approach to find clusters in large sets of spatial data objects and demonstrated the approach on a dataset of
trajectories. Kwon et al. [2018] developed Clustervision, which clusters a dataset with various clustering
algorithms, and ranks and visualises clustering results based on quality metrics, allowing analysts to
choose the most suitable for their purpose.

2.2.3 Classification

Classification is a supervised ML technique which can identify to which class a record belongs, given
a sufficiently large training set of labelled records. VA can help classification algorithms by adding the
knowledge of the user in an iterative manner [Paiva et al. 2015]. For example, iVisClassifier [Choo et al.
2010] supports a user-driven classification process, where the analyst explores multi-dimensional data
through a supervised dimensionality reduction and performs classification.

2.2.4 Active Learning

Known active learning strategies include looking for helpful records a) near decision boundaries of
margin-based classifiers [Wu et al. 2006; Tuia et al. 2011]), b) with high entropy of class probabilit-
ies [Settles and Craven 2008], c) with high uncertainty of a committee of classifiers [Seung et al. 1992;
Mamitsuka 1998], or d) to reduce risk [Qi et al. 2009] or variance [Hoi et al. 2006].

Common active learning strategies include Smallest Margin [Scheffer et al. 2001; Wu et al. 2006],
Entropy-Based Sampling [Settles and Craven 2008], and Least Significant Confidence [Culotta and Mc-
Callum 2005]. These three strategies are fast, and are commonly used as uncertainly sampling active
learning strategies [Bernard, Zeppelzauer, Lehmann et al. 2018]. For the robustness of the experiment,
in Chapter 5, all three techniques are included in the comparison with interactive visual techniques.

Only a few existing techniques work independently of the learning ML model, by choosing to focus
on data characteristics. Some approaches explicitly allow users to select records in the kind of interact-
ive visualisations typically used for data exploration or analysis [Bernard et al. 2014; Ritter et al. 2018].
For example, Heimerl et al. [2012] incorporates active learning for interactive visual labelling of text
documents. Höferlin et al. [2012] introduced inter-active learning, which extends active learning to a
visual analytics process for building ad-hoc training classifiers. The visual interactive-labelling (VIAL)
process [Bernard, Zeppelzauer, Sedlmair et al. 2018] combines both model-based active learning and
interactive visual interfaces to support the human-centered selection and labelling of records. Recent ex-
periments have shown that individual strategies have different complementary strengths [Bernard, Hutter
et al. 2018; Bernard, Zeppelzauer, Lehmann et al. 2018].
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2.2.5 Evaluation of Visual Analytics Systems

There are many ways to evaluate interactive systems for visual analysis [K. Andrews 2006; K. Andrews
2008]. Lam et al. [2012] systematically reviewed over 800 visualisation publications and identified
seven scenarios (motivations) for the evaluation of information visualisations: three for understanding
data analysis processes and four for evaluating the visualisations themselves. Sedlmair, Meyer et al.
[2012] identified nine stages of design when designing visualisations for domain experts. According to
these scenarios and design stages, Wong et al. [2018] suggested appropriate evaluation methods for each
stage.

It can, however, be challenging to evaluate such systems [Plaisant 2004; Carpendale 2008; Crisan
and Elliott 2018]. Running controlled experiments on interactive visual systems can be particularly
challenging. Datasets can vary wildly and tasks are often dependent on the kind of data being explored.
Domain experts can be hard to find or unwilling to participate [Wong et al. 2018]. It is also hard to
measure and compare the “insights” which such systems are designed to discover [North 2006].

The difficulty of running controlled experiments has lead to the increasing use of qualitative evaluation
methods involving case studies and (longer term) observation of individual users. Shneiderman and
Plaisant [2006] introduced the idea of the Multi-dimensional In-depth Long-term Case (MILC) study,
a structured process to evaluate a VA system by observing a small number of domain experts using the
system with their own datasets over a longer period of time. The MILC method has been shown to give a
comprehensive understanding and high-quality results [Valiati et al. 2008; Perer and Shneiderman 2009].

2.2.6 Delineation of the Approach and Novelty in Chapter 4 and Chapter 5

The mVis tool which is introduced in Chapter 4 extends the approach of VIAL: analysts can use linked
interactive visualisations to help mitigate the cold start problems associated with active learning. In
addition, clustering and classification are provided to better guide the user in the labelling task. This
novel technique lets the analyst intuitively build an ML model without the need for in-depth knowledge
for machine learning algorithms. Moreover, Chapter 4 describes two stripped-down case studies of
the mVis system with domain experts (in the spirit of MILC), which will be used to guide and inform
future development and evaluation. In Chapter 5, it is shown how the proposed techniques surpass active
learning algorithms, for labelling a multivariate dataset. As labelling is the first step to build an ML model
for a dataset, any slight improvement in labelling process significantly reduces the cost of building an
ML model and increases the accuracy of it.

2.3 Multimodal Interaction for Visual Analytics
The interactions in VA applications are often used as a direct medium to create queries and change
the visualisation (e.g., for details on demand and changing views) using traditional WIMP interfaces.
Moreover, they mostly focus on single modality (i.e. input device), to interact with the system. However,
recent technology has brought novel sensing devices which allow for capturing user input and indirect
user feedback beyond the typical desktop environment, e.g., by using eye-tracking. This allows for novel
approaches for taking into account indirect user feedback (e.g., relevance feedback) and uses it to support
and enhance the analysis process, both for making queries and as an indirect input for machine learning
algorithms and VA techniques [Collins et al. 2018]. These input modalities are already proven to be
beneficial in other domains such as Human-Computer Interaction and Computer Graphics [Turk 2014].

At a high level, information visualisation systems consist of two components: visual representation
and interaction. Visual representation concerns the mapping from data to display [Yi et al. 2007]. The
interaction starts with a user’s intent to perform a task, followed by a user action. The system then reacts
and feedback is given to the user [B. Lee et al. 2012]. It is essential to consider both visual representation
and interaction when designing an application for information visualisation.
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Research on combining multiple interaction modalities has a long history in the field of human-
computer interaction. In one of the earliest works, Wang [1995] proposed VisualMan, a device and
application-independent pipeline to integrate various modalities including gaze and voice into a user
interface for 3D object selection and manipulation.

Some researchers have begun to look at how to integrate multiple interaction modalities into visual
analytics interfaces. Srinivasan and Stasko [2018] presented Orko to explore the idea of using natural
language interaction for network exploration. Shao, Silva et al. [2017] suggested using eye-tracking as
input for exploration of patterns in scatterplot spaces. They used eye-tracking to detect which plots have
been inspected by the user to suggest the most dissimilar plot by a guideline.

2.3.1 Visualisation on Large Displays

Researchers in various fields are increasingly confronted with the challenge of visualising and exploring
high-dimensional datasets [Keim 2002; Shao, Mahajan et al. 2017]. Keim argues that although many
traditional techniques exist to represent data, they are often not scalable to high-dimensional datasets
without suitable analytical or interaction design [Keim 2002].

With the current size and resolution of typical computer displays, it is challenging to represent entire
datasets on one screen using techniques like SPLOM or parallel coordinates. The user is often forced
to resort to panning and zooming, leading to frustration and longer task completion times. Ruddle et
al. [2015] conducted an experiment in which participants searched maps on three different displays for
densely or sparsely distributed targets. They concluded that since the whole dataset fits on a larger
display, sparse targets can be found faster.

Every view in a multiple linked views occupies space on display. If more space is available, additional
views can be shown simultaneously. Allowing the user to access multiple windows increases perform-
ance and satisfaction [Czerwinski et al. 2003]. P. Isenberg, Dragicevic et al. [2013] present hybrid-image
visualisation for data analysis, where two images are blended to achieve distance-dependent perception.
This concept might be especially helpful for collaborative visual analysis tasks on vertically-mounted
displays, where users observe data from various distances.

2.3.2 Visual Data Analysis and Multi-Touch Interaction

Previous researchers proposed various interaction techniques for large displays and multi-dimensional
dataset interaction on multi-touch displays. Roberts [2005] proposed a classification of large display
interaction having five dimensions: visualisation technology, display setup, interaction modality, applic-
ation purpose, and location. Khan presented a survey of interaction techniques and devices for large,
high-resolution displays [Khan 2011]. The survey categorises modalities of interaction into speech,
tracking, gestures, mobile phones, haptic and other technologies such as gaze and facial expression.

Tsandilas et al. [2015] presented sketchsliders, a tool that provides a mobile sketching interface to cre-
ate sliders which interact with multi-dimensional datasets on a wall display. Zhai et al. [2013] introduced
gesture interaction for wall displays based on the distance of the user from the screen. The gestures can
be performed in far or near mode. Heilig et al. [2010] developed multi-touch scatterplot visualisation on
a tabletop display. Sadana and Stasko [2016] proposed advanced techniques for scatterplot data selection
on smaller touch-based devices, such as tablets and smartphones.

MultiLens supports various gestures for fluid multi-touch exploration of graphs [Kister et al. 2016].
The Regression Lens [Shao, Mahajan et al. 2017] allows the user to interactively explore local areas
of interest in scatterplots by showing the best fitting regression models inside the lens. The idea of
visualising local regression models is also studied by Matković et al. [2017]. Rzeszotarski and Kittur
[2014] introduced Kinetica, a tool for exploring multivariate data by physical interactions on multi-touch
screens. Kister et al. [2016] presented BodyLenses, a promising set of magic lenses for wall displays,
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which are mostly controlled by body interaction and therefore suitable for interacting with wall displays
from a distance.

2.3.3 Collaborative Visualisation

Large displays are well-suited to collaboration [C. Andrews et al. 2011; P. Isenberg, T. Isenberg et al.
2013]. Jakobsen and Hornbæk [2014] conducted an exploratory study to understand group work with
high-resolution multi-touch wall displays. The study suggests that using this kind of display helps users
to work more efficiently as a group and fluidly change between parallel and joint work. A large display
benefits group working on a shared task, since users can operate on one common physical medium and
share information on it.

Morris et al. [2006] formalised the concept of cooperative gestures as a set of gestures performed by
multiple users and interpreted as a single task by the system. Liu et al. [2017] developed CoReach, a set
of gestures for collaboration between two users over large multi-touch displays. Comparing the use of a
large vertically-mounted display against two ordinary desktop displays, Prouzeau et al. [2017] concluded
that groups obtain better results and communicate better on large, vertically-mounted displays.

An experiment by Pedersen and Hornbæk [2012] showed that users prefer horizontal surfaces over
vertically-mounted displays, but this result was limited to simple single-user tasks and not collaborative
tasks with different dynamics. Vertically-mounted displays allow users to obtain an overview of their data
by stepping back from the display and make it possible to interact from afar as well as up close. Badam
et al. [2016] proposed a system for collaborative analysis on large displays by controlling individual
lenses through explicit mid-air gestures.

2.3.4 Second Handheld Device

Using direct input on vertically mounted displays can cause the “gorilla arm” problem — a term used to
explain the fatigue which sets in when users interact with their hands on a vertical screen for a prolonged
period [Goodwins 2008].

Using a secondary handheld device is another option to interact with a large display, especially in
situations where interacting with the display up-close is not adequate. Kister et al. [2017] designed GraSp
– a set of spatially aware techniques for graph visualisation and interaction. Using these techniques, the
analyst can explore graphs on wall displays by using a touchscreen on the secondary handheld device and
body movement together with spatially aware mobile interactions. Later, Langner et al. [2018] presented
a coordinated views application which can be controlled by both direct multi-touch and one or more
secondary handheld devices. However, the secondary handheld devices are purely used for input, not for
output.

2.3.5 Delineation of the Approach and Novelty in Chapter 6

In comparison to applications presented in Chapter 6, the aforementioned studies either focus on a differ-
ent type of interaction and medium or are not designed for collaborative visual analytics tasks. Moreover,
other studies are focused on less complicated visual analytics tasks, and do not tackle the problem of col-
laborative analysis of ML models, such as regression. This thesis presents two novel techniques for
collaborative analysis of regression models on either large multi-touch display, or a combination of a
handheld device and a large display. Moreover, Chapter 6 proves that gaze input can be used for visual
exploration of multivariate datasets.
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Chapter 3

Local Scatterplot Patterns

“There is in all things a pattern that is part of our universe. It has symmetry, elegance, and
grace - these qualities you find always in that the true artist captures.”

[ Frank Herbert, Dune. ]

The first step to incorporate VA into machine learning models is to use it for finding structures in the
ML model. Incorporating VA for finding global structures are extensively researched, but searching for
local patterns are often neglected. The novelty of this chapter is to use VA for finding local patterns in
scatterplot spaces.

3.1 Introduction
The properties of a SPLOM for the purpose of data analysis have already been widely explored in the
literature. While these techniques focus on exploring patterns within the data at a global level, little
attention has yet been paid to the analysis of local structures and patterns. For the purposes of this work,
a pattern is defined as a set of points in a scatterplot (i.e. from two of the n dimensions) contained within
a specified bounding box. Points outside the bounding box are not part of the corresponding pattern. A
global pattern comprises all the points in a particular scatterplot; in other words, the bounding box covers
the entire scatterplot. A local pattern comprises a subset of points in a scatterplot. A query pattern is a
pattern defined by the user, typically by interactively dragging a box.

One or more descriptors can be defined to characterise a pattern. A descriptor is a function taking
a pattern (set of points) as input and producing a feature vector as output. Shape-based descriptors
are based on the visual properties of the pattern, for example by subdividing the pattern into grid cells
and calculating features such as the relative density of points in each cell. Model-based descriptors
are derived mathematically, for example from a regression model, where individual features might be
determined by evaluating the regression function at specific points.

The similarity between patterns can be defined in terms of similarity in the feature space of each
corresponding descriptor, based on a distance metric such as the L1 metric or quadratic form distance
[Beecks et al. 2010]. In practice, best results were often achieved using a similarity function defined as
a weighted combination of distance metrics, subject to minimum thresholds for two measures of pattern
matching quality. This is discussed in detail in Section 3.3.

With regard to local pattern analysis in scatterplots, Shao, Mahajan et al. [2017] previously proposed
a scheme to explore and display regression models for interactively selected local regions of a scatter-
plot. However, that work only considered a single scatterplot (2 of the n dimensions) independently of
any others. The implemented solution extends that approach to search for similar local patterns within

17
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Figure 3.1: The SPLOM view 1 can be examined for interesting patterns (rectangular regions).
The colours of records (points) simply indicate the class they belong to. A query pat-
tern can be specified interactively by dragging a bounding rectangle 2 in a scatterplot
of interest. The query pattern can further be adjusted using the floating toolbox 3 .
Matching patterns in the SPLOM are highlighted by coloured overlays according to
their similarity to the query pattern. Dark red ones are the most similar and yellow ones
are least similar 4 . The patterns with the green overlay are patterns marked by the user
as relevant 5 .

all other scatterplots in the SPLOM. Matching patterns are ranked by similarity and presented to the
user for further exploration. Visual highlighting is used to indicate matching local patterns within other
scatterplots. The user can refine the search by selecting the patterns most relevant to their interests. A
relevance feedback mechanism is then used to identify and recommend additional potentially relevant
results. Figure 3.1 shows an overview of the approach.

For example, consider a dataset where the dimensions are attributes of a country (such as population,
GDP, etc.) and the records are data from various countries and years (such as Japan 2010). Choosing
an interesting local pattern and being able to explore similar local patterns within other scatterplots
opens up a powerful new way to discover relationships between subsets of records across the entire
multidimensional space. Appropriate interaction mechanisms allow the user to inspect the ranked set
of matching local patterns and refine their query to explore further. While this work focuses on the
search for local patterns in other dimensions, the approach can be easily extended to finding patterns
in other scatterplots of the same dimensions. For example, consider a dataset containing information
about customers in various quarters of the year. Each quarter can be shown as a scatterplot, allowing the
analyst to find similar patterns in other quarters. Another use case is searching for similar patterns in
one scatterplot and on different clusters. For example, in the countries dataset, one could be interested in
countries following the same pattern in the GDP-Population scatterplot.

The main goal was to develop an approach to find local patterns in a scatterplot space, without prior
knowledge about the dataset. The design of a search algorithm for defined local patterns differs fun-
damentally from the design of a system dealing with general use cases. If the patterns of a dataset are
known, it is possible to add carefully tailor-made descriptors. If no prior knowledge about the dataset
exists, a general algorithm and descriptors to search for patterns are needed. For this reason, an ap-
proach which takes into account shape and model-based descriptors, various parameters, and a relevance
feedback module was introduced. The approach can be further customised for specific datasets. The
contributions of this chapter are:

1. A set of interactive strategies to select local patterns of interest in one or more scatterplots.
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Figure 3.2: Finding similar local patterns in a SPLOM. First, the user selects a rectangular portion
of a scatterplot to create the initial query 1 . Next, all identifiable patterns are extracted
from the SPLOM using a sliding-window approach. Their feature vectors and purity
scores are calculated, leading to a similarity score between each pattern and the query
2 . The most similar patterns are visualised in the SPLOM 3 . The user can then

indicate which of the matching patterns are most relevant to their needs, thus refining
the query 4 .

2. An approach facilitating local pattern exploration by suggesting similar local patterns in other scat-
terplots across the entire SPLOM, based on relevance feedback.

3. Shape-based and model-based descriptors to characterise local patterns.

4. A similarity metric to determine the best matching local patterns in the rest of the multidimensional
space.

3.2 Research Questions and Hypothesis
After discovering an interesting local pattern in one scatterplot, an analyst sometimes wants to search
for similar local patterns in the rest of the SPLOM to investigate otherwise hidden relationships such as
correlations between dimensions in a subset of the dataset.

This chapter addresses RQ1: How to use VA for finding structures in the ML model? More specifically,
how to use VA to effectively search within local structures in a scatterplot space. Therefore the following
research question is asked.

Research Question 3.1 (RQ3.1): How to use VA for finding local patterns in a scatterplot space of a
multivariate dataset?

This chapter presents a novel visual analytics approach to select, search for, visualise and refine the
search for local patterns. Figure 3.2 illustrates the search pipeline. Therefore, a hypothesis correspondent
to RQ3.1 is formed.

Hypothesis 1 (H1): Exploratory visual analytics, together with similarity search, is well suited for find-
ing local patterns in scatterplot spaces.

3.3 Exploring Local Patterns in Scatterplots
To begin a search for local patterns, the analyst draws a bounding box around a set of points in a scat-
terplot of interest, which specifies the initial query (Step 1 in Figure 3.2). The system then extracts a set
of patterns from the entire space of scatterplots in the SPLOM. These patterns are built by successively
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(a) A shape-based descriptor defined by point density
in a 5× 5 grid, where the cell colour indicates relat-
ive density.

(b) A model-based descriptor defined by a quadratic re-
gression model.

Figure 3.3: Shape-based and model-based descriptors.

translating and scaling a bounding box over each scatterplot. The bounding box moves over a scatterplot
by a discrete translation step size and scales from the smallest size until it fits the whole scatterplot by
a discrete scaling step size. All the patterns generated are added to the resulting set of patterns, which
holds all extracted patterns (Step 2.1).

Feature vectors are extracted to describe each pattern using both model-based and shape-based
descriptors. Shape-based descriptors represent the perceptual similarity of patterns. Since they char-
acterise the data according to appearance, they have some limitations [Pandey et al. 2016]. Model-based
descriptors (currently from regression models) are used to capture the relationship between points in a
pattern (Step 2.2). Since it can also be important that both the query and a pattern from the set of patterns
contain a larger set of identical records, an overlap of records in the query and the target pattern is com-
puted, and is used to filter the results. To this end, purity scores (Section 3.3.2) are introduced. Purity
scores indicate how many records from the query, exist in a pattern.

A ranking of patterns is determined by comparing the query and patterns using the descriptors, and the
best matching patterns are then visually highlighted in the SPLOM (Step 3). The user can now select the
patterns most relevant to their needs and the relevance feedback module refines the search parameters
based on user’s feedback and searches for new patterns (Step 4).

3.3.1 Model-Based and Shape-Based Descriptors

Shape-based descriptors use shape information to characterise a pattern. The pattern is partitioned into a
grid of cells. Then, a 2D histogram is calculated, in which each feature represents the density of points in
the corresponding cell. The density is calculated by Nsubset / Ntotal, where Nsubset is the number of points
in the cell and Ntotal is the total number of points (records) in the pattern. Figure 3.3a shows a simple
5 × 5 grid of a pattern. This descriptor is scale-invariant.

Model-based descriptors characterise relationships between points in a pattern. For example, a local
regression model estimates the relationship among variables in the local area of a scatterplot. Based on
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(a) User-defined query pattern containing seven points. (b) A matching pattern containing eight points, of
which three are contained in the query.

Figure 3.4: A user-defined query pattern and one matching pattern

the notion of the regression model, a regression-based descriptor is used. Since ranges of the regression
models are not the same, it is not possible to compare two feature vectors created by two different
regression models unless values of points are normalised. For this reason and also to keep the descriptor
scale-invariant, the points are normalised. Then, a linear, cubic, quadratic or 4th-degree regression model
is calculated. Assuming the regression model is f : X → Y and X ∈ {0.0, 0.1, . . . , 0.9, 1.0}, the feature
vector is built by iterating over the domain X. Therefore, there are 11 features in the feature vector.
Figure 3.3b shows an example of a regression model for a pattern. The function to calculate the distance
between two feature vectors is:

∑n
i=0(|yi

1 − yi
2|)

n
(3.1)

3.3.2 Purity Scores for Pattern Comparison

Since the set of records in the query and a pattern are not always equal, it is useful to consider the
similarity of records. Inspired by pattern recognition algorithms, purity scores Pprecision and Precall are
introduced. The Pprecision is calculated by dividing the total number of records shared between both
patterns, Nshared, by the total number of records in the target pattern, Npattern. This score shows how
many matched records exist in the target pattern. In contrast, Precall is defined as Nshared divided by
Nquery, which is a total number of points in the query. This score indicates what percentage of records is
repeated from the query in the target pattern:

Pprecision = Nshared / Npattern (3.2)

Precall = Nshared / Nquery (3.3)

Both scores are between zero and one. It is possible that the analyst prefers to filter out patterns with
low purity scores. Figure 3.4 gives an example of purity scores. Figure 3.4a shows a query with seven
records. Figure 3.4b shows a target pattern containing three records from the query. In this case, the
purity scores are Pprecision = 3 / 7 and Precall = 3 / 8.
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Figure 3.5: A snapshot of the application showing the Countries dataset from the World Bank
[TWB 2018]. The scatterplot outlined in red in the SPLOM is selected and is shown en-
larged in the scatterplot view to the left. The user has already specified a query pattern
and chosen to visualise the patterns in aggregation mode using shape-based descriptor
colour-coding. In aggregation mode, all patterns similar to the query are highlighted in
the SPLOM. The greenish colour-coding indicates the strength of the similarity accord-
ing to shape-based descriptors.

3.3.3 Ranking Algorithm

A ranking algorithm is used to obtain a ranked list of patterns similar to a query pattern. The rank-
ing algorithm incorporates the distance between descriptors (Section 3.3.1) of the query and candidate
patterns, as well as purity scores between them (Section 3.3.2).

In the first step, L1-distances between descriptors of the query and all candidate patterns are calculated.
For each descriptor type, separate distance measures of ds (shape-based descriptor) and dm (model-based
descriptor) are obtained. Both of these distance sets are then min-max normalised to [0, 1]. For the
ranking, both distances are combined with a parametrised weight and scaling. Subsequently, purity
scores are computed among query and candidate patterns to filter the ranking.

The effective ranking computed by the algorithm can be formalised as a descending ordered list with
respect to the similarity score s : (q, p) (Formula 3.4) between the query pattern q and each candidate
pattern p:

s(q, p) =

0 if Pprecision < Ppmin or Precall < Prmin

wm(1 − dm) + s(1 − wm)(1 − ds), otherwise
(3.4)

where wm and 1−wm are weights assigned to the descriptors, Ppmin and Prmin are minimum thresholds for
purity scores, and s is an additional distance scaling coefficient. Scaling distances after they have been
normalised might further improve ranking quality, since the distribution within the distance spaces of
dm and ds is likely to differ significantly. This cannot be compensated for by min-max normalising both
distributions. In practice, the greatest interest is directed towards patterns having the smallest distances
to a query and not towards those patterns yielding the largest distances.

The ranking algorithm can be customised by adjusting several parameters in a graphical dialogue to
better reflect the user’s notion of similarity for the respective dataset (or domain) at hand:

wm within [0, 1] balances the weight between distances ds and dm obtained for each descriptor type.
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(a) Selection (b) Lens (c) Moving (d) Scaling (e) Scaling

Figure 3.6: Possible user interactions with the scatterplot. (a) The user first draws an arbitrary shape
around the points. (b) The bounding box appears around the records. (c) The user can
translate the box. (d) By placing two fingers on the top side of the box, the user scales
the box vertically. (e) By placing two fingers on the right side of the box, the user scales
the box horizontally.

s is an arbitrary real-valued number that can be used to fine-tune the weighting. In particular, it might
compensate distortion for the first results in case of very differently shaped distributions within the
distance spaces obtained by ds and dm.

Ppmin, Prmin are thresholds in [0, 1] that steer the filtering of the ranking by purity scores, where 0
disables the filtering. If both are set to 1, only candidate patterns sharing all points with the query
will yield non-zero similarity.

shape-based descriptor resolution is an additional parameter within {2, 3, 4, 5} which controls the
spatial resolution (number of grid cells) of the shape descriptor.

model-based descriptor degree is an additional parameter which controls the degree of the polyno-
mial regression used for the model-based descriptor. In the current system, it is within {1, 2, 3, 4}.

3.3.4 Relevance Feedback Algorithm

By examining the ranking algorithm above, the set of parameters involved in computing a similarity
ranking of patterns for a respective query can be identified. For example, in Formula 3.4, the values
for wm, Ppmin and Prmin can be any number in [0,1] and the coefficient s can be an arbitrary number.
Moreover, four shape-based and four model-based descriptors are used, which affect dm and ds.

As mentioned in the previous section, the system provides a graphical dialogue, through which the
user may tweak individual parameters of the ranking algorithm. However, for many users without a
background in information retrieval, tweaking these parameters is difficult. Even with more in-depth
understanding of the ranking algorithm, tweaking the parameters in a meaningful way is highly specific
to the characteristics of the currently used dataset.

This issue is addressed by applying a relevance feedback module, which derives parameter values
from user-provided examples of similar patterns. After an initial search, the module enables the user
to select multiple patterns from the result set, which best match his or her notion of similarity. There
is no need for manual parameter tuning, since the user provides feedback by indicating which patterns
are most relevant to their current needs. In essence, the user tweaks the parameter set indirectly through
relevance feedback. This method is widely used in information retrieval systems.

The relevance feedback module then evaluates the rankings of the selected result patterns with a large
number of parameter configurations and selects the configuration Ck which minimises the aggregated
rankings of the selected patterns. The operation is shown in Formula 3.5, where u1, u2, ... , u j are the
patterns selected by the user and rankingCk (q, ui) denotes the ranking position obtained for pattern ui and
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query q when a certain parameter configuration Ck is used (see Section 3.3.3):

argmin
Ck

( n∑
i=1

rankingCk (q, ui)
)

(3.5)

To keep the delay in the graphical user interface to a minimum and also to avoid numerical issues
in certain cases, the problem is not addressed continuously. Instead, all aggregated ranking scores are
computed over a discrete set of possible parameter configurations for the user selected set of similar
patterns. Since both the descriptors and the respective distances can be precomputed, a ranking can be
computed with almost negligible computational cost (see Section 3.3.5 for details). It is hence possible
to evaluate several thousand parameter configurations without noticeable delay in the graphical user
interface.

In the current system, all configurations Ck are obtained as the 6-fold Cartesian product of the discrete
value ranges for the individual parameters of the ranking algorithm. In addition to the value constraints
for the parameters that are already mentioned in Section 3.3.3, the weights wm used for evaluation are
within {0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0} and the scaling s is within {1.0, 1.5, 2.3, 3.4}. The numbers are
chosen heuristically. In the current implementation, only a single value is used as range for Ppmin and
Prmin, but both are computed based on the user selected set of patterns according to Formula 3.6 and 3.7.
In these equations, 0.2 is a number derived heuristically from various search results:

Ppmin = min
ui

(
Pprecision(q, ui)

)
− 0.2 (3.6)

Prmin = min
ui

(
Precall(q, ui)

)
− 0.2 (3.7)

3.3.5 Complexity of the Algorithm

The run-time of the algorithm has two aspects. The first is the pre-processing required for a particular
dataset. The second is the time required to search for patterns during user interaction. For the first aspect,
three variables play a role:

Step size for sliding window: Both the translation step size and the scaling step size directly affect
the number of patterns extracted per scatterplot. For example, if the translation step size is 0.1 and
the scaling step size is 0.2, at most 385 patterns are extracted. In practice, some windows do not
include any data points and therefore the number of extracted patterns is reduced.

Number of dimensions: If a data set has n dimensions, the maximum number of extracted patterns
is n × (n − 1) × 385. For the example step sizes above, a dataset with 10 dimensions would see at
most 34650 patterns extracted.

Number of descriptors: For each pattern, a number of feature vectors are extracted. This number
directly affects the computation time. In this work, four feature vectors are used for shape-based
descriptors and another four for model-based descriptors. If calculating a feature vector for a pattern
costs, say, time td, the final maximum time for pre-processing the example dataset above would be
34650 × td.

For the second, run-time aspect of the algorithm during user interaction, the number of parameters and
patterns extracted in the pre-processing stage play an important role. For the configuration described in
this chapter, 7 × 4 × 7 × 4 × 4 searches are conducted per pattern. If ts is the time for one search, then a
maximum time of 34650 × 3136 × ts is required for one query.
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(a) Search with purity scores. (b) Search without purity scores.

Figure 3.7: The coloured records (red, green, and blue) are chosen by the user in the query. In
(a), the user chooses to filter only patterns having a high similarity of records with the
query, while in (b) there is no restriction.

3.4 System Overview
To answer RQ3.1, a prototype application has been implemented on a vertically-mounted Eyevis 84-inch
multi-touch display with a resolution of 3840 × 2160 pixels and a frame rate of 60 Hz [eyevis 2018].
This setup is being extended for multimodal, multi-user scenarios. The prototype application is written
in Java, using JavaFX for the user interface and the TUIO [Kaltenbrunner et al. 2005] and TUIOFX
library [Fetter and Bimamisa 2015] for multi-touch interaction. The application consists of two linked
views, a scatterplot, and a SPLOM. The user can open a scatterplot from the SPLOM in a new window or
in the existing scatterplot view. The records in scatterplots and the SPLOM are coloured based on their
(predetermined) class labels. By using a large, high-resolution display, visualising a multi-dimensional
dataset on a SPLOM is supported.

3.4.1 Constructing a Query

To construct a query, the analyst first selects a scatterplot from the SPLOM. The selected scatterplot
is shown on the left panel. As shown in Figure 3.6, the analyst draws an arbitrary closed shape in the
scatterplot to select a set of records (points). While previous studies suggest creating the search query
based on a sketch [Shao et al. 2014], this proposed free-form selection technique enables the user to
search for local patterns. The query is built by fitting the minimum sized rectangle around the selected
records. Inspired by the work of Shao, Mahajan et al. [2017], a regression model is visualised within the
rectangle as well. In this work, the regression model is used to help the analyst obtain an abstraction of the
pattern for a better understanding of the final query. The abstraction of information is a significant step
in information visualisation to reduce cognitive efforts to interpret the data [Gleicher et al. 2011]. The
analyst can scale the rectangle to include more records. Moreover, for more fluid interaction with large
multi-touch screens, a floating toolbox is provided as shown in Figure 3.5. The analyst can manipulate
the rectangle with one hand and the floating toolbox with the other hand simultaneously. Once selection
of query points is finished, the analyst taps the search button to initiate a search.
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(a) The query. (b) First scatterplot. (c) Second scatterplot.

Figure 3.8: (a) The user selects a query. Since both shape and model-based feature vectors are
scale-invariant, all four patterns in scatterplots (b) and (c) are marked as similar.

(a) Aggregation (b) Best-matches (c) Union

Figure 3.9: Three different techniques are used to highlight matching patterns in a scatterplot. In
(a), all matching patterns are shown in aggregation. In (b), the best matching patterns
are highlighted. In (c), the union of all matching patterns is highlighted.

3.4.2 Search

After query selection, the system searches for similar patterns in the SPLOM. Patterns in the SPLOM are
extracted and all feature vectors are pre-calculated in multiple threads as the dataset is loaded into the
application. On a standard PC with an Intel Core i7 CPU and 18 GB of RAM, a dataset containing ten
dimensions, 240 records, producing a total of 5941 patterns, requires 26 seconds for pre-calculation. The
calculated values are stored in a cache. Each pattern contains four shape-based and four model-based
feature vectors.

3.4.2.1 Set of Patterns

To achieve better performance, a set of patterns is created from the SPLOM just once after the dataset is
loaded. A set of patterns per scatterplot is generated by the sliding-window approach. A pattern with less
than 5 points is ignored. For a dataset containing 240 records and ten dimensions, the system extracted
5941 patterns. The translation and scaling steps of the window are adjustable by the analyst. As shown
in Figure 3.5, the analyst can change the step sizes by clicking on the Advanced button in the toolbox.
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(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

Figure 3.10: The results of the query shown in Figure 3.8a. The first row shows the best matches
in the initial search results, where the weight of both shape-based and model-based
descriptors are the same. The second row shows the five best matches after the user
chose the first and the last matches in the initial search result and the relevance feed-
back module has adjusted the search parameters accordingly.

3.4.2.2 Purity Scores and Feature Vectors

The Advanced options in the floating toolbox allow the analyst to manipulate the parameters of the rank-
ing algorithm. The options are located in the Filtering and Weights tabs. For example, in Figure 3.7(a),
the analyst chose 50% for Min Pprecision value in the Filtering tab, while in Figure 3.7(b) the value is set
to 100%. Instead of configuring the parameters manually, the analyst can rely on the relevance feedback
module.

3.4.3 Similarity Visualisation

After the similarity search algorithm has determined the distance between items in the set of patterns and
the query, the application visualises the patterns. Three techniques are used to visualise them: visualising
a differing number of patterns based on the user’s need, interactive brushing, and colour-coding based on
distance.

Firstly, the user can choose between three options to manage the number of visually highlighted pat-
terns: aggregation, best-matches, and union. As shown in Figure 3.9a, by choosing aggregation, all
similar patterns according to the similarity search algorithm are visualised. This method may show
overlapping patterns and creates rectangles that do not exist. To avoid this, the user can select the best-
matches option, shown in Figure 3.9b. In this method, if two rectangles overlap by more than 70%, the
more similar pattern will remain. The union in Figure 3.9c combines all patterns into one shape and the
colour of the shape is the average of patterns combined.

Secondly, by brushing the selected points in scatterplots, the similarity scores are visualised. This
method makes the user aware of the similarity between selected records and patterns.

Pandey et al. [2016] showed that judging similarity between plots purely according to their appearance
may be misleading. Therefore, thirdly, to avoid relevance feedback favouring shape-based descriptors,
a colour-coding function to show similarity according to different descriptors was implemented. Three
multi-hue colour palettes are used to indicate the distance between the query feature vectors and pat-
tern feature vectors based on shape-based descriptors (green shades), model-based descriptors (purple
shades), and their combination (red shades). Figure 3.1 and Figure 3.5 show the colour palettes.
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(a) The initial query (Finland) in the scatterplot of En-
ergy Use against GDP per Capita.

(b) Similar patterns are found in the scatterplot of En-
ergy Use against Income per Person.

Figure 3.11: Three local patterns are found, indicating similar behaviour of three countries in an-
other scatterplot.

3.4.4 Relevance Feedback Module

As an example of relevance feedback, the top row of Figure 3.10 shows the top five query search results
from the query in Figure 3.8a. The second row shows the refinement after relevance feedback. Records
in the query have a positive linear relation. In the first row, the system declares five patterns as most
similar to the query, whereby wm = 0.5, Ppmin = 0.00 and Prmin = 0.00 were used. The grid size of
the shape-descriptor is 2 × 2 and the regression model in the model-descriptor is quadratic. The user
indicates that the first and fifth patterns (Figure 3.10a1 and Figure 3.10a5) are relevant and the patterns
highlighted in green.

The relevance feedback module determines a new set of parameters in which wm = 0.2, Ppmin = 0.80
and Prmin = 0.57 with a grid size of 3 × 3 for shape-based descriptors and linear regression model for
model-based descriptors. The pattern in Figure 3.10a2 is ignored since the similarity score thresholds are
not satisfied. The patterns in Figure 3.10a3 and Figure 3.10a4 are similar to the query by the model-based
descriptor, but since the weight for it is low, they are taken out of the ranking. Also, the Purityrecall and
Purityprecision are below the thresholds. As shown in the second row of Figure 3.10a3, the new patterns
are more visually similar to the query.

This example shows the usefulness of the relevance feedback module. Since the search algorithm is
scale-invariant, some found patterns have a significantly different slope to the query. The system does
not know the meaning behind units within scatterplots, therefore the scaling and angle of slope may not
be meaningful.

3.5 Use Cases
Any multivariate dataset can be loaded into the application. To test Hypothesis 1, three query scenarios
are discussed using a subset of the Countries dataset from the World Bank [TWB 2018]. The datasets
contains ten dimensions and 126 records. The dimensions are attributes of countries such as GDP per
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(a) The initial query. (b) A similar pattern in another
scatterplot.

(c) A local positive correlation.

Figure 3.12: Since the result pattern looks very similar to the initial query, a possible relationship
might be expected between the two horizontal scatterplot dimensions.

Capita, Life Expectancy, and Population Growth. The records contain information about each country
for each year between 1995 and 2015. Here, the data for six countries was used: Austria, Ecuador,
Finland, Macedonia, Norway and Serbia. Figure 3.5 shows the dataset as visualised in the system. All
three query scenarios were refined using the relevance feedback module. For simplicity, only the initial
query and final results are presented.

The first query scenario is shown in Figure 3.11. The user selected all data points corresponding to
Finland (green) in the scatterplot of Energy Use plotted against GDP per Capita. After refining the search
with relevance feedback, three similar patterns belonging to Austria, Finland, and Norway were found in
the scatterplot of Energy Use against Income per Person. This result is perhaps to be expected, since all
three nations are developed countries in Europe and GDP and Income per Person are generally related.
The parameters of the search are Ppmin = 0.00, Prmin = 0.00, s = 1.0, wm = 0.5, 4 × 4 resolution of the
shape-based descriptor, and a linear model-based descriptor.

After investigation of the first query, the user decides to investigate the scatterplot of CO2 per Capita
against Income per Person. This time, the user selects all three aforementioned countries to form the
initial query, as shown in Figure 3.12. As may have been suspected, the same pattern is found in the
scatterplot of CO2 per Capita against GDP per Capita. Again, the user suspects a possible relationship
between Income per Person and GPD per Capita. The assumption is valid since there is a local positive
correlation for these three countries, as shown in Figure 3.12c. After checking with other similar queries,
the user concludes that the Income per Person dimension is redundant and that keeping GDP per Capita
is sufficient for their purposes. The parameters of the search are Ppmin = 0.80, Prmin = 0.80, s = 1.0,
wm = 0.2, 3 × 3 resolution of the shape-based descriptor, and a quadratic model-based descriptor.

The user continues to explore the dataset by examining the scatterplot of Life Expectancy against
Population Growth, as shown in Figure 3.13a. The user selects the data points comprising Macedonia,
Serbia, and Ecuador at the bottom of the scatterplot. The most similar pattern is located in the scatterplot
of Life Expectancy against Energy Use. This pattern looks like a flipped version of the query. The
user decides to inspect the scatterplot of Energy Use against Population Growth to look for any local
relationship between records in the query. As shown in Figure 3.13c, a local negative correlation exists
between the points of these three countries, but no correlation is apparent when all of the points in the
scatterplot are considered. The parameters of the search are Ppmin = 0.59, Prmin = 0.65, s = 1.0, wm = 0,
5 × 5 as the resolution of the shape-based descriptor, and a quadratic model-based descriptor. Since
wm = 0 in this search, the model-based descriptor is ignored.
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(a) The initial query. (b) A similar pattern in another
scatterplot.

(c) A local negative correlation.

Figure 3.13: There is some similarity between the initial query on the left and the matching local
pattern on the right. There is a local negative correlation between the two horizontal
scatterplot dimensions.

3.6 Discussion
The presented approach allows users to search for similar local patterns in a set of scatterplots, helping
users explore multidimensional datasets by comparing patterns. More specifically, the approach focuses
on finding related patterns with regard to shape-based and model-based similarity across different re-
gions, dimensions, and record subsets of a larger SPLOM space. Therefore, this chapter answered RQ1,
and more specifically RQ3.1.

Users can initiate a search by interactively selecting a region of a scatterplot as an initial query. An
obvious extension would be to include a sketch-based interface where query patterns can be sketched
in free form. Currently, the user must manually inspect the SPLOM to find a suitable query pattern in
a scatterplot. A more scalable approach for a larger SPLOM would be to include a clustering step to
identify representative local patterns (e.g., using density-based clustering). Then, an overview of cluster
prototypes could be offered to the user to choose a query pattern, optionally editing this using sketching
or by blending with other prototype patterns.

Through experimentation, it was found that similarity search of scatterplot patterns depends on the
chosen descriptors and dataset. When inappropriate descriptors are used, the search results may be
perceived as dissimilar by the user, although they are similar according to the definition of the descriptors.
A relevance feedback approach allows users to tune search parameters implicitly, steering the system
towards a notion of relevance fitting their current needs. In informal experiments, it was observed that
this approach can return more relevant patterns. More formal evaluation regarding information retrieval
measures would be interesting. The usability of the relevance feedback interface needs to undergo some
more formative evaluation. In addition, a comparative study of the system with and without relevance
feedback would be desirable.

Finally, the use cases provided in this chapter tested and proved Hypothesis 1. It is shown that ex-
ploratory VA is well suitable to find local patterns in scatterplot spaces, such as local positive, or local
negative correlations.



Chapter 4

Interactive Visual Labelling

“Once you label me you negate me.”

[ Søren Kierkegaard, Danish philosopher, 1813 - 1855 ]

After incorporating VA for finding local patterns in scatterplot spaces, the next question is how to use
it for building ML models. This chapter introduces a novel interactive visual technique, to enable the
analyst to build an ML model of a multivariate dataset for supervised ML, using linked visualisations,
clustering, and active learning.

4.1 Introduction
A multivariate dataset is a dataset with more than one dimension. Partitioning a multivariate dataset into
labelled classes (partitions) is one of the most prominent supervised machine learning (ML) tasks. Every
record in a partitioned dataset must belong to exactly one of the partitions: records cannot belong to
multiple partitions, nor can they be left belonging to no partition.

Once a classifier has learned the characteristics of a given multivariate dataset in the training process,
the ML model can thereafter be used to automatically partition other, similar datasets. The state of the
art in ML demonstrates the effectiveness of today’s classifiers in many domains, from the detection of
attacks in computer networks [Lin et al. 2017] to facial image data analysis [Choo et al. 2010].

Two prerequisites for effective ML techniques are the availability of (1) sufficiently large training
datasets and (2) labels provided with those datasets. Without labels, a supervised ML model cannot be
trained. Without sufficient numbers of labelled records for training, the supervised ML model will not
perform effectively.

However, the unavailability of labels for many real-world datasets is often the bottleneck in supervised
ML applications. Today’s scientists are often overwhelmed by thousands or even millions of unlabelled
records in datasets, all of which are thus unavailable for supervised ML. Given a means to more effect-
ively support analysts in the labelling process, a plethora of unsolved real-world data-centered challenges
could be addressed with ML techniques.

The particular challenge addressed by the approach can be exemplified by a domain expert wanting
to use a previously unknown multivariate dataset for supervised ML, where neither the characteristics of
the dataset are known, nor are there any labels or labelled records.

Sometimes, the cost of labelling a dataset is significantly higher than the cost of creating it [Bernard,
Hutter et al. 2018] and effective labelling solutions are still scarce. Analysts are confronted with the
problem of making sense of a dataset, for example by identifying data characteristics such as frequent
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1

2

3

5
4

Figure 4.1: The scatterplot matrix (SPLOM) view 1 shows the bivariate relationships between di-
mensions. The analyst can select a scatterplot from the SPLOM to show it in detail
2 . The partition similarity map 3 shows partitions grouped by similarity and colour-

coded as indicated in the partitions panel 4 . If two partitions have associated dimen-
sions (through user interaction), they are connected by a line. The parallel coordinates
view 5 shows the dimensions of the dataset. Dimensions participating in the machine
learning algorithms are indicated with a blue ribbon.

patterns or outliers. Active learning (AL) techniques, where the system periodically asks the user to label
chosen records, can assist in the labelling process. However, since no labels exist at the beginning, AL
techniques often suffer from bootstrap problems [Attenberg and Provost 2011].

Adding to the challenge is that an appropriate label alphabet, the vocabulary of labels, is generally
unknown at the start of such a process, given an unknown dataset and/or users with ill-defined informa-
tion needs. In some situations, different label alphabets might be appropriate, depending on the task at
hand or a user’s individual preferences. Analysts often derive the labels appropriate for a specific data-
set and task from the data itself, exploiting the characteristics encoded in the multivariate data records
and dimensions. In other situations, analysts rely on special domain knowledge to come up with initial
labels. In any of these cases, neither AL tools nor the results of classifiers are particularly helpful for the
determination of a label alphabet. Furthermore, the label alphabet is often subject to change during the
labelling process itself.

Combining the strengths of humans and computers has been shown to be highly beneficial for the
ML process [Amershi et al. 2014] as well as for information visualisation and visual analytics (VA)
[Sacha, Sedlmair et al. 2017]. The visual interactive labelling (VIAL) technique [Bernard, Zeppelzauer,
Sedlmair et al. 2018] combines ML principles with interactive visual interfaces for the effective selection
of records for labelling. This principle has been adopted here. With the highly iterative VIAL pro-
cess, a classifier can be continuously updated according to new label information provided by the user.
Embedded AL strategies guide the user towards records which, once labelled, are likely to improve the
underlying ML model. In mVis (multivariate Visualiser), this principle is complemented with interactive
visual interfaces for data exploration, allowing the meaningful selection and labelling of records based
on insights gained by the user, in addition to those suggested by AL. Figure 4.1 shows the user interface
of mVis.

The interactive visual approach described in this work enables analysts to label records and create



Research Questions and Hypothesis 33

1. Create/Edit Partitions

User creates or edits
named partitions based on
interactive visualisations.

Records can be moved from
one partition to another.

2.1. Clustering/Classification
System classifies “unknown” records according 

to current model, or clusters them.

2.2. Active Learning
System guides user to label strategically chosen 

records, which improve quality of partitions.

3. Building the 
Classifier

Final labelled dataset
 is saved for use

as training dataset for a 
classifier.

Unlabelled
Dataset

Labelled
Dataset

Figure 4.2: The workflow for interactive labelling. First, the analyst creates and names (labels)
partitions in the dataset and assigns records to them. In the second and the third step,
with guidance from the system, partitions are refined, and more records are added (la-
belled). After sufficient iterations, based on the quality of the result, the analyst saves
the labelled dataset to be used as a training dataset for a classifier.

partitions of a previously unknown dataset in an effective and efficient way. While analysts may start
without any knowledge about the dataset and the label alphabet, the output of the implemented approach
is a labelled training dataset which can be used for supervised ML. The labelling process represents a
pathway from unsupervised ML, through semi-supervised ML, to supervised ML. This pathway is guided
by algorithms built upon both unsupervised and supervised ML principles. The approach presented here
has three main components: (a) visual exploration, (b) interactive visual labelling, and (c) automatic
guidance.

Firstly, the dataset can be explored interactively using a palette of linked visualisations, including
scatterplots, a SPLOM, similarity maps, and parallel coordinates. These tools allow interactive visual
exploration of a dataset’s records and dimensions to both discover and then interactively label groupings,
patterns, and outliers. Moreover, a novel view called the partition similarity map shows the similarity
of partitions (each represented by a coloured node), based on the centroid of each partition. A link is
drawn between two partitions if both partitions are associated with at least one common dimension. A
dimension is associated with a partition, if the user interacted with that dimension while adding records
to the partition.

Secondly, records can be selected and labelled in any of the interactive views, leading to labelled
datasets which can be used for supervised ML. During the labelling process, dimensions that the user
interacted with to perform labelling are added to the label as metadata. This solution facilitates labelling
without the need for domain-specific visual representations by leveraging the structural information
provided within a multivariate dataset, such as patterns and relations between records and dimensions.
The original VIAL process is extended by incorporating classic k-means and hierarchical clustering to
the supervised ML techniques.

Thirdly, clustering, active learning, and classifier algorithms are all available to support the effective
and efficient selection of candidate records for labelling. In addition, using a new automatic dimension
selection technique, interactions of the user with specific data dimensions are remembered and fed into
the semi-supervised and supervised ML techniques. For example, if the user selected records in a scat-
terplot of dimensions A and B, and added these records to a partition, then dimensions A and B are
associated with that partition. Initially, dimensions which are not interacted with play no role in the ML
algorithms, but the user has final control over which dimensions should be included in or excluded from
the ML algorithms.

4.2 Research Questions and Hypothesis

This chapter addresses RQ2: How to use VA for building an ML model? More specifically, how to use
VA to effectively label a multivariate dataset. Therefore the following research question is asked.
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Research Question 4.1 (RQ4.1): How to use VA together with traditional ML techniques for interactive
labelling of a multivariate dataset?

The primary contribution of this chapter is to elaborate how linked interactive visualisations can be ef-
fectively integrated with classic ML algorithms to provide guidance during the labelling process without
overwhelming the user. This work adds to explorations of the potentially large design space of visual
analytics methods facilitated by active learning, and sets examples upon which to build future work.

A hypothesis correspondent to RQ4.1 is formed and tested in this chapter. To demonstrate the ef-
fectiveness of the approach, it has been incorporated into the mVis system and tested with a real-world
football dataset.

Hypothesis 2 (H2): By using interactive visualisation techniques, an analyst can build a machine learn-
ing model for a multivariate dataset.

4.3 Interactive Visual Labelling
It is often the case that an analyst is confronted by an exploratory scenario in which the records in
the dataset are unknown, and no labels are assigned to them. For ML applications, similar records
must be grouped together and manually labelled in order to use the dataset as a training dataset. Since
the definition of similarity varies from dataset to dataset, it is necessary to offer support to analysts to
interactively group and label records and iteratively construct the label alphabet (L).

In an exploratory scenario, there is no single absolute L for a dataset. Based on the knowledge of
the expert, L and the records assigned to each partition may vary significantly. Thus, a dynamic L is
necessary to empower the analyst to build an appropriately labelled dataset fitting the purpose of the
desired classifier. This includes allowing the analyst to (1) add new labels to L, (2) delete labels from L,
(3) add or remove records to a label in L and (4) rename a label in L.

A partition, identified by Pi, is a set of records from the dataset, whereby each record must belong to
one and only one partition. The union of all partitions P contains all records in the dataset. Each partition
also has a label, li, which is a text string belonging to the label alphabet L, and a set of related dimensions
Dimi:

Pi = (li,Reci,Dimi) (4.1)

where:

li is one of the labels in the alphabet L. One label exists for each partition, one partition exists for
each label.

Reci is the set of all records labelled as li. There is a non-injective non-surjective function which maps
records to partitions. In other words, every record is mapped to one and only one label at a time;
f : P → L, where f is the function which maps records to labels. The mapping is guided by the
system, but is the analyst’s task.

Dimi is a set of dimensions that the user interacted with while adding records to Pi. It is possible for
a dimension to be associated with more than one partition, and there could be dimensions which are
not associated with any partition.

4.3.1 Analyst Role: Selection and Labelling

Figure 4.2 illustrates the workflow in which an analyst creates and edits partitions and labels records
interactively. Initially, all records are assigned to a special partition labelled as unknown. In the first step,
the analyst creates at least one partition, assigns records to it, and gives it a label. Later, the analyst can
perform clustering and classification to label further records currently labelled as unknown. In the case of
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(a) The initial state with three partitions: green circles,
blue circles, and red triangles (unknown).

(b) After clustering from (a), with k-means (k=3). The
newly suggested clusters (partitions) are orange,
yellow, and purple.

(c) After classification from (a) with a similarity
threshold of 70%. Hollow circles are the system
suggestions.

(d) After active learning from (a) in which the system
suggested 30 records for labelling by the user.

Figure 4.3: The results of clustering, classification, and active learning in mVis, each applied to
the initial state shown in (a). In each case, hollow circles indicate records with labels
suggested by the system. Solid circles indicate previously approved labels. Solid red
triangles indicate currently unlabelled records belonging to the unknown partition.

clustering, the system creates new partitions of unknown records and assigns temporary labels to them.
In the case of classification, currently labelled records are used as a training set to label other unknown
records based on existing partitions, which then potentially expands them. In either case, the system
provides guidance by suggesting new labelled records, which the analyst can then approve or reject.

Periodically, the system suggests that the analyst should manually label a specific number of records
by running active learning techniques. These records are wisely chosen to further resolve ambiguity in
the dataset. The analyst investigates the result and decides if the alphabet and labels on records need
further improvement. The process finishes when the analyst is satisfied with the quality of the result.
The result of this process is a label alphabet (L) and a set of labelled partitions (Pi), in other words a
labelled training dataset for a classifier. Records still labelled unknown may or may not be included in
the output.
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4.3.2 System Role: Guidance

The system’s role is to suggest records for labelling to the analyst by visual clustering, classic clustering,
classification, and active learning. Table 2.1 differentiates between these four kinds of technique.

In terms of visual clustering, the system provides similarity maps using one of three different projec-
tions: PCA, MDS, and t-SNE. Similar records are grouped by proximity and the analyst can efficiently
create and modify partitions by visually inspecting these views.

In terms of classic clustering, the user can ask the system to cluster currently unlabelled records,
using either k-means or hierarchical clustering. This results in a number of newly created partitions (i.e.
clusters) with temporary labels, which the analyst can then either rename, approve, or reject.

Once sufficient numbers of records have been labelled, the analyst can use classification to help label
further records. After performing the classification, the system calculates the similarity of each record
(r j) to each partition (Pi). The sum of all these scores for each record is always 100. The user can then
define a similarity threshold. The system will suggest adding records with a similarity score higher than
the threshold to the corresponding partition. If multiple partitions have a higher similarity score than the
threshold, the system will choose the partition with the highest score. The user can either approve or
reject the new suggestions. In classification, no new partitions or labels are created, but records may be
added to the existing partitions Pi.

For active learning (AL), the system also requires a sufficient number of labelled records. It then
chooses those unlabelled records which are most likely to further resolve ambiguity in the dataset, and
asks the analyst to manually label them. Unlike clustering and classification, AL is not triggered by the
user, but periodically by the system. Figure 4.3 shows the differing results of clustering, classification,
and active learning in mVis.

The set of all dimensions associated (by user interaction) to at least one partition, Dim, is the union of
all Dimi. The above techniques do not always incorporate all of the dataset’s dimensions in their various
calculations. Instead, a set of participating dimensions is maintained by the system. Initially, the set
of participating dimensions is set to be Dim, a feature called automatic dimension selection. However,
the analyst has final control, and can include or exclude any dimensions from the set of participating
dimensions. The final result of the workflow is a labelled dataset which includes Pi, L, and a set of
related dimensions.

4.4 mVis System Overview
The mVis system consists of four data visualisation views and a panel to control partitions. mVis is
written in Java and uses JavaFX for its user interface. It supports traditional mouse and keyboard as well
as multi-touch user input. The system has been tested on a PC with a 3.4 GHz Intel i7-6700 CPU and
64 GB of RAM, running 64-bit Windows 10.

4.4.1 Visualisations and Partitions Panel

The four linked exploratory data visualisations built into mVis are: SPLOM, scatterplot, similarity map
(projection by PCA, MDS, and t-SNE), and parallel coordinates plot. All the visualisations are connected
through standard brushing and linking, so selections and changes in one view are reflected in all other
views. Moreover, the user can close, rearrange, or enlarge any view. Axis tick labels in the scatterplot
and parallel coordinates views reflect the original values in the dataset. Coordinates in the SPLOM view
are normalised, so axis tick labels are omitted.

The SPLOM provides an overview of the entire dataset by showing all bivariate projections of n
dimensions. The result is a matrix of n2 scatterplots [M. A. A. Cox and T. F. Cox 2008]. The SPLOM
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(a) Creating P1.
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(b) Creating P2.
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(c) Similarity map.

Figure 4.4: Records are added to partition P1 (blue) from AB, then to partition P2 (green) from
AC. The partition similarity map shows a link between P1 and P2 because they are both
associated with dimension A.

can indicate both patterns of records in two dimensions and correlations between pairs of dimensions,
which can then be examined in individual scatterplots.

Individual scatterplots are widely used for regression analysis [Shao, Mahajan et al. 2017] or explora-
tion of local patterns (see Chapter 3). In mVis, the user can select a scatterplot in the SPLOM, which is
then shown enlarged in the scatterplot view.

In mVis, the parallel coordinates view supports several interactions, including brushing and selection
of records, filtering of records by dragging sliders at the top and bottom of each axis, reordering axes,
and inverting axes.

The similarity map view provides two kinds of similarity map: a similarity map of records and a
similarity map of partitions. The record similarity map shows all the records in the dataset visually
clustered by similarity, using one of three projection techniques: PCA, MDS, or t-SNE. More similar
records are closer together in the similarity map. The default projection technique is t-SNE, but the user
can choose a different technique in the preference menu.

The partition similarity map shows all currently defined partitions, grouped by similarity in the form
of a node-link diagram. Each partition is represented as a circular node, whose size corresponds to
the number of records in the partition. If two partitions share associated dimensions, then a line (link)
is drawn to connect them, whose width corresponds to the number of shared associated dimensions.
Figure 4.4 illustrates how such a diagram is created. First, in Figure 4.4a, the analyst creates a partition
P1 containing records selected in the scatterplot of dimension A against dimension B (AB). Later, in
Figure 4.4b, the analyst assigns records to P2 from the scatterplot AC. Since both partitions are associated
with dimension A, there a link is drawn between P1 and P2, as shown in Figure 4.4c.

The partitions panel shown in Figure 4.5 gives the analyst the possibility to create new partitions,
assign records to partitions, and delete partitions. The name (label) of a partition can be edited and
the colour assigned to it can be changed. A special partition labelled unknown contains all currently
unlabelled records and is initially coloured red. If a partition is deleted, all records contained within it
are returned to the unknown partition. The analyst can temporarily hide the records in a given partition.
Clicking the “+” button next to a partition adds currently selected records to it.

Records which have been manually assigned to a partition or approved by the analyst are considered
to be “ground truth” and are represented by solid circles in the SPLOM, scatterplot, and record similarity
map. Hollow circles represent records with a suggested partition, colour-coded according to the partition.
Unlabelled records belong to the unknown partition and are represented by solid triangles, in the colour
assigned to the unknown partition (initially red, but the colour can be changed by the analyst).
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Figure 4.5: The partitions panel. In the upper part of the panel, the analyst can create partitions
and obtain suggestions for records to add to them. The lower part of the panel is for
manipulating existing partitions.

k-means 1 k-means 2 k-means 3 k-means 4

Figure 4.6: The SPLOM after k-means clustering (k=4) with automatic dimension selection. A blue
ribbon beneath a dimension name indicates its participation in the ML technique. The
first two dimensions appearances and mins_played from the football dataset have particip-
ated in the clustering, which is reflected in the better results in their rows and columns.
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(a) Three participating dimensions. (b) Two participating dimensions.

hierarchical 1 hierarchical 2 hierarchical 3 hierarchical 4

Figure 4.7: Part of the parallel coordinates plot after hierarchical clustering (k=4). The clusters are
more visually appealing in (b).

In the upper part of the partitions panel, the analyst can initiate ML techniques such as clustering
and classification to obtain suggestions for records to assign to partitions. Such records become hollow
circles and are recoloured to the suggested partition’s colour until either approved or rejected by the
analyst by clicking the Reject or Approve buttons next to each partition in the panel. Suggested records
which are rejected become solid (red) triangles again and are moved back into the unknown partition.
Approved records become part of the partition and are henceforth represented by solid circles.

4.4.2 Machine Learning Modules

Various ML algorithms are implemented to support the interactive labelling process, including dimen-
sionality reduction, clustering, classification, and active learning. All of these algorithms are implemen-
ted using the Java library called DMandML [DMandML 2018]. Interactions with an ML algorithm can
be unintuitive and overwhelming to use at times. mVis uses simple widgets and a minimal number of
exposed parameters to keep interactions intuitive.

While assigning records to partitions, the system keeps track of the dimensions the user interacted
with, maintaining a set of associated dimensions for each partition. By default, only those dimensions
associated with at least one partition participate in the ML algorithms. The user can toggle participation
of a dimension by clicking on the dimension name in the SPLOM or parallel coordinates view. Particip-
ating dimensions are indicated by a blue ribbon beneath the dimension name. Figure 4.6 shows k-means
clustering (k=4) utilising only two of the eight available dimensions. Figure 4.7 demonstrates the effect-
iveness of automatic dimension selection when hierarchical clustering is performed on the dataset.

At any stage, the analyst can perform clustering by clicking on the clustering button in the partitions
panel. The system will then cluster all currently unlabelled (unknown) or unapproved records using k-
means or hierarchical clustering. By default, mVis uses k-means, but the user can change the algorithm
by selecting hierarchical in the menu. For each cluster, a new partition is created and given a tempor-
ary name (label) of the form k-means #cn or hierarchical #cn, where #cn is the number of the cluster.
Records assigned to a cluster are simply suggestions by the system and require subsequent user approval.
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(a) First step (b) Second step

(c) Third step (d) Fourth step

superstars playmakers goalkeepers bench tough defenders golden substitutesunknown

Figure 4.8: Four steps of labelling the football dataset, shown in the partition similarity map. (a)
The user manually creates superstars and playmakers partitions. (b) After a clustering
step using k-means, two partitions called goalkeepers and bench are approved by the
user. (c) The user creates tough defenders and golden substitutes partitions and assigns
records to them. (d) The user performs active learning to label more records. The final
result is a label alphabet with seven members.

Alternatively, once sufficient records have been assigned labels, the analyst can run a classifier to
classify those records which are currently either unknown or unapproved. The system then runs a Random
Forest classifier using the already labelled (approved) records as a training set. The user can control the
number of suggestions by adjusting the similarity threshold with the slider next to the Classification
button. While the slider is adjusted, a number indicates its precise value. With a higher threshold, only
those records more similar to a specific partition will be suggested. Similar to clustering, the analyst can
then approve or reject the classification result.

Periodically, the system actively guides the user to manually label a number of records using active
learning. The suggested labels can either be approved or rejected. The number of suggested records can
be fine-tuned and active learning can be turned off completely with the checkbox in the partitions panel.

The current design of mVis has visualisation and algorithmic limitations. Regarding the visual scalab-
ility of the label alphabet (number of partitions), upto around twelve distinct colours can be comfortably
distinguished [Harrower and Brewer 2003]. The SPLOM and parallel coordinates views are limited by
the amount of available screen space. mVis runs in real-time with a football dataset comprising 42 di-
mensions and 318 records on a 25-inch desktop display at a resolution of 2560 × 1440. One possibility
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to increase scalability would be to apply subspace clustering to provide an initial set of records and di-
mensions to explore [Hund et al. 2016]. The currently implemented ML algorithms run in real-time for
the aforementioned number of partitions and dimensions.

4.5 Football Dataset Use Case

To test Hypothesis 2, the following use case that utilises a football dataset of players from 16 clubs
participating in five top European leagues in the 2017/18 season [Berger et al. 2018] is introduced.
The records are individual players, the dimensions are players’ attributes such as the number of match
appearances, committed fouls, assists, pass accuracy, and so forth. The dataset comprises 318 records
and 13 dimensions.

The goal of the analyst exploring this dataset is (1) to group the players into labelled partitions based
on their characteristics, and (2) to use the dataset to train a classifier for other seasons of the same or
even entirely different football leagues.

For an initial grouping, the analyst wants to identify match-winning players and label them as
superstars. The analyst proceeds by selecting the scatterplot of goals against assists in the SPLOM.
The analyst creates a partition, labels it superstars, and includes all data records with high numbers of
goals and assists.

Another important category of players are the so-called playmakers, having a high number of assists and
key_passes. By filtering players with a high number of assists and key_passes in the parallel coordinates
view, the analyst can find records to add to the playmakers partition. To expand the label content so that
not only top players are included, the analyst searches for players similar to those selected. To this end,
the analyst sets the Classification Threshold slider in the partitions panel (see Figure 4.5) to 60% and
clicks the Classification button. As a result, the system suggests 100 records be labelled as playmakers
and 20 as superstars. The analyst realises that this is a large number of players to be added to each
partition and decides to reject the suggestion. Later, the analyst performs another classification with the
slider at 80%. This time, 15 records are suggested to be added to playmakers and 5 to superstars. The
analyst accepts the suggestion by clicking the Approve button of both partitions. The partition similarity
map in Figure 4.8a shows the state of the dataset after creating the partitions superstars and playmakers.

Apart from these two obvious choices, the relationships between other dimensions are unfamiliar to
the analyst. The analyst turns off the automatic dimension selection feature, chooses 4 as the value
in the # of Clusters field, and performs a k-means clustering. By making all partitions except one in-
visible, the analyst inspects the newly suggested partitions one by one. The first suggested partition
is k-means 1, containing 16 records. The analyst realises all the dimensions for these records are zero
except appearance, mins_played, and ball_recovery. Therefore, the analyst renames the k-means 1 parti-
tion to goalkeepers. Similarly, the analyst renames k-means 2 with 88 records to offensive players.
This partition is associated with the dimensions key_passes, dribbles_won, and goals. Next, the analyst re-
names k-means 3 with 71 players to defensive players, since it is associated with ball_recovery, clearances,
aerial_duels_won, fouls_committed, and interceptions. Finally, the partition k-means 4 with 116 records is re-
named bench. This partition is associated with a low number of appearances and mins_played.

The goal is not to create partitions based solely on a player’s role on the field, so the analyst decides
to delete the partitions offensive players and defensive players by clicking their Delete buttons, but to
retain the partitions goalkeepers and bench by clicking their Approve buttons. Figure 4.8b shows the state
of the dataset after this step.

Similar to the group of match-winning superstars, the analyst wants a label for defensive players hav-
ing a high impact on the team. From the previous exploration, the analyst already knows which dimen-
sions are associated with defensive characteristics. Therefore, the analyst creates the tough defenders
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(a) K-means. (b) Hiearchical.

Figure 4.9: The results of k-means and hierarchical clustering for k=6, using offensive attributes of
football players.

partition characterised by their performance in the dimensions aerial_duels_won, interceptions, and tackles_

won.

Exploring further, the analyst selects all records which (1) belong to the bench partition and (2) have
either a high number of goals, key_passes, clearances, dribbles_ won, assists, or aerial_duels_won and calls
the new partition golden substitutes. To further support the analyst, the remaining unlabelled records
(belonging to the unknown partition) can be suggested to existing partitions via active learning. This
helps refine existing labels and increasing the overall quality, an option which is not possible in traditional
ML techniques.

The analyst investigates the result shown in the partition similarity map of Figure 4.8d. The tough defenders
partition is linked to golden substitutes partition, since they are both associated with the clearances di-
mension. Also, playmakers and superstars are relatively close to one other in the partition similarity
map, possibly because playmakers and superstars share similar offensive characteristics. Since the user
interacted with eleven dimensions, only two dimensions are not highlighted with a blue ribbon.

The result of the session is a labelled football players dataset with meaningful partitions, which can be
used as a training dataset for a classifier for other seasons or different leagues.

4.6 Pre-Studies for mVis
There are many ways to evaluate interactive systems for visual analysis [K. Andrews 2006; K. Andrews
2008] and many motivations behind such evaluations [Lam et al. 2012]. However, as previous researchers
have noted, it can be challenging to evaluate such systems [Plaisant 2004; Carpendale 2008; Crisan and
Elliott 2018]. Datasets can vary wildly and tasks are often dependent on the kind of data being explored.
In many applications, domain experts are recruited for evaluation. However, a domain expert is not
always available or willing. It is also hard to measure and compare the “insights” which such systems
are designed to discover [North 2006]. The difficulty of running controlled experiments has lead to the
increasing use of qualitative evaluation methods involving case studies and observation of individual
users [Shneiderman and Plaisant 2006; Perer and Shneiderman 2009].

To further test mVis, and Hypothesis 2, in this section, a pre-study evaluation of the mVis system,
comprising two case studies each in a different domain (collaborative intelligence and daily activities) is
described. In each case study, a volunteer researcher with no previous experience of mVis was observed
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Figure 4.10: The facilitator (left) and researcher (right) conducting a case study with mVis intro-
duced in Chapter 4.

Figure 4.11: A screenshot of mVis taken during the second case study.
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as they used mVis to explore, label, and verify a dataset from their own domain. The researchers were
asked to talk out loud as they worked to provide greater insight into their thought process [Ericsson
and Simon 1984]. Afterwards, the researchers participated in a semi-structured interview. This type of
evaluation is useful to (1) test the usability of the system, (2) understand how the current implementation
helps the analyst with their tasks, and (3) identify important missing features. The results will be used
to inform and plan future evaluations. Figure 4.10 shows the setup of a case study. Figure 4.11 shows a
screenshot of mVis during the second case study.

4.7 Pre-Studies Methods
Since the focus of mVis is not on a specific domain, gathering requirements and evaluation feedback
is complex. It is necessary to conduct several domain expert studies to identify common requirements
and improve usability of the system. Since the system is still evolving, qualitative studies involving
observation and thinking-aloud, followed by semi-structured interviews are preferred over other types of
user study.

The pre-study evaluation of the mVis system comprised two case studies, each with a domain expert.
In each case study, the domain expert was a volunteer researcher with no previous experience of mVis.
The faciliator first provided the researcher with a five-minute introduction to mVis. Then, the researcher
was observed as they used mVis in their own office environment to explore, label, and verify a familiar
dataset from their own domain, while thinking out loud [Ericsson and Simon 1984]. The facilitator sat
next to the participant and took notes, and provided assistance with mVis when asked. Afterwards, the
participant was interviewed in a semi-structured way to discover (1) their general impression of mVis (2)
any missing features, and (3) in which stages of analysis mVis proved useful.

4.7.1 Case Study 1: Collaborative Intelligence Dataset

The volunteer researcher in the first case study was Monika. She is working on a collaborative intel-
ligence platform dataset consisting of 718 records and ten dimensions. Each record represents a user
and the dimensions are quantitative numbers associated with activities of the user on the platform (for
example, number of comments and number of reports). Monika has been working with this dataset for
over a year.

The session was conducted on a laptop with a 12-inch display in Monika’s office. The facilitator
imported the dataset into mVis after cleaning it. The facilitator then explained the user interface of mVis
for around 5 minutes and asked Monika to freely explore the dataset while verbalising her thoughts.
She started by investigating patterns in pairwise dimensions. For example, she realised that users who
participate in chats do not often give comments. She also identified a relationship between comments
and reports. Later, she performed several brushing interactions, using either the parallel coordinates
plot or scatterplot. After the initial exploration phase, she created two partitions using first k-means and
then hierarchical clustering. The new partitions mainly separated active and inactive users. She deleted
all partitions and then performed another k-means clustering with k equal to four. Monika removed
votes from the participating dimensions, since it is not a good indicator for clustering based on her prior
experience. The result was better this time. For example, she identified that one of the clusters are users
having a low number of reports. In summary, Monika used mVis primarily to (1) find new patterns among
users and dimensions, (2) verify her previous observations about the dataset, and (3) create meaningful
partitions.

A semi-structured interview was conducted shortly after the observation phase. The facilitator started
by asking Monika’s impression of mVis. She said she could confirm many previous observations in her
explorations and even find new ones. She stated “Understanding this dataset would have been so much
easier, if I had had this tool a year ago”. The facilitator asked which features mVis is missing. She
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noted a lack of interactive help, lack of an easy-to-use dataset importer, lack of a feature to save previous
partitions, and no means to visually compare old and new partitions. Monika later added that mVis is
especially useful for people who do not have enough knowledge to use other tools such as R and Python.
Finally, the facilitator asked in which stages of analysis mVis can be useful. Monika mentioned mVis
is useful in the initial phase of data exploration to understand dimensions and records before creating
advanced ML models. The duration of the session after importing the dataset was 55 minutes.

4.7.2 Case Study 2: Daily Activities Dataset

The participant in the second case study is Jian, a researcher working on a dataset about daily activities.
The dataset has 25 dimensions and 412 records collected by feature extraction from time-series signals.
The signals are gathered by placing various sensors in users’ pockets to observe their daily activities.
Each record belongs to a specific user and has already been manually assigned to (labelled with) ex-
actly one of six states (classes) denoting daily activities: walking, walking upstairs, walking downstairs,
sitting, standing, and laying. Figure 4.11 shows this dataset in mVis.

The session was conducted in Jian’s office on a PC with a 24-inch display. The PC screen and user’s
voice were recorded on video. First, Jian explained the dataset to the facilitator and remarked that he
has been exploring the dataset for six months using conventional data science tools such as R, Python,
and SQL. He mentioned that he never tried to visualise the dataset using standard visualisation tech-
niques. After introducing mVis to him, the facilitator imported the dataset into mVis. Jian reacted to the
visualisation by stating “this looks great”. Since the dataset was already labelled, he focused on finding
relationships between dimensions and partitions. He first imported all 25 dimensions, and later decided
to include only the first 10 dimensions into mVis. He started by identifying dimensions and their rela-
tionships with partitions. For example, he realised a dimension called D8 can separate records labelled
as laying from the others. By looking at the SPLOM, he discovered that many patterns recur among pairs
of dimensions. He remarked that mVis does an excellent job in grouping dimensions and partitions. He
later performed clustering to observe the differences between manual labelling and automatic partitioning
using ML algorithms. At this point, he wished there was a visual comparison tool to compare previous
and current partitions. In summary, Jian used mVis to (1) identify correlations between dimensions and
partitions, (2) find relationships between pairs of dimensions, and (3) verify the manually labelled ML
model in the dataset.

After the observation phase, the facilitator conducted a semi-structured interview. He first asked Jian
about his impression of mVis. Jian mentioned that mVis might be useful for finding patterns in a dataset
and he would use it for data exploration and ML model validation. Regarding missing features, he made
two suggestions. First, a comparison tool to compare various partitions and secondly a guidance module
to explain patterns in scatterplots. Lastly, he answered the question about which stage of data analysis
mVis is useful by mentioning initial exploration. He added mVis could also play a crucial role in the
validation phase. The duration of the session, including the introduction to mVis was 42 minutes.

4.8 Discussion
Characterising, comparing, and grouping (partitioning) the records in a dataset are among the most es-
sential tasks in data analysis. The implemented approach supports these tasks with an interactive visual
labelling tool. Using interactive visualisations, an analyst can identify and label groups of records in a
dataset initially containing no pre-labelled records. Once the analyst has provided an initial labelling, the
system supports labelling more records via clustering, classification, and active learning. With the help of
clustering, the analyst can find structures in the dataset which may not be visible by manual exploration.
Using classification, the labelled data will be used as a training set for records which are not yet labelled.
Moreover, the active learning module regularly makes strategic suggestions to improve the quality of
partitions. The user is always responsible for approving or rejecting suggestions, which increases overall
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(a) MDS (b) PCA (c) t-SNE

Figure 4.12: The three projection techniques provided by the record similarity map. The colours
were assigned by an initial k-means clustering with k=6.

trust in the result. As the presented use case shows, algorithmic support helps efficiently propagate cur-
rent labelling to more records. The approach supports both the creation of a new label alphabet and the
refinement of an existing label alphabet.

Currently, mVis supports both k-means and hierarchical clustering. Although k-means is more scalable
and hierarchical is more flexible, neither is superior to the other. It is the responsibility of the domain
expert to choose the most suitable algorithm in a specific situation. Figure 4.9 shows the results of
k-means and hierarchical clustering in the football dataset.

Three projection algorithms (MDS, PCA, and t-SNE) are supported for the record similarity map.
Research by Bernard, Hutter et al. [2018] shows that users prefer t-SNE as a dimensionality reduction
technique for labelling tasks and later switch to PCA and MDS for validation. Therefore, the default
algorithm in mVis is t-SNE. Figure 4.12 shows the differences between these algorithms, performed on
the football dataset.

The pre-study with two case studies involved a combination of thinking-aloud, observation, and in-
terview. It demonstrated the general utility of mVis and illuminated future directions. mVis is a general
purpose system and is not designed for a specific domain, therefore it is crucial to work with a variety of
analysts and domain experts to define common analysis approaches and goals and address these in the
system. This pre-study, showed interactive visualisation techniques are a proper tool for building an ML
model, and consequently proved Hypothesis 2.

One of the key observations of the study is how the nature of the dataset can change interactions
with the system. For example, in the case of the collaborative intelligence dataset, the focus was on
selecting individual records and investigating each dimension thoroughly. The smaller nature of the
dataset allowed the analyst to do this. In case of the daily activities dataset, it was not possible for
the analyst to explore all records and dimensions. The analyst was more interested in typical pairwise
patterns and relationships between dimensions. By conducting more case studies on a variety of datasets
from a variety of domains, it is hoped that further behavioural patterns and typical tasks will be revealed.



Chapter 5

Interactive Visual Labelling versus Act-
ive Learning

“The resemblance between reasoning and love;
Is like comparing a dew versus the ocean”

[ Hafez, Persian poet, 1315-1390. ]

It is shown that interactive visual labelling is an effective approach for labelling multivariate datasets.
Therefore, the next question is, how this novel approach performs in terms of accuracy, compared to act-
ive learning techniques. By conducting a user study, this chapter proves that interactive visual labelling
can outperform active learning approaches.

5.1 Introduction
Labelling is assigning a class from the label alphabet to an instance (a record) in a multivariate dataset.
Supervised machine learning algorithms, such as classifiers [Bishop 2006], must be trained on a labelled
dataset in order to perform. These methods learn how to generalise new data, based on existing known
data examples which are provided with a class label. Creating a training dataset is essential to find a
small subset of a dataset that delivers the best accuracy for the classifier. Although labelling a dataset is
necessary, it can be a dull, time-consuming, and expensive task.

To address this problem, active learning algorithms can help the analyst by suggesting instances to
label [Settles 2009]. Active learning algorithms effectively reduce the number of records which need to
be interactively labelled. Active learning techniques require heuristics for record selection, which often
depend on the classification problem or data characteristics. Furthermore, interactive visual labelling
(VIAL) [Bernard, Zeppelzauer, Sedlmair et al. 2018] tools build explorable visual overviews on top
of active learning algorithms and can outperform classic active learning techniques in terms of accur-
acy [Bernard, Hutter et al. 2018]. Such combined tools allow an analyst to label a multivariate dataset in
a visual environment, while receiving feedback and guidance from the system. Based on the overall data
characteristics perceived by the analyst, conscious choices can be made as to what distinguishes groups
of data and how many groups there should be, and representative records can be labelled. Immediate
feedback can be given regarding the current set of labelled records, for example by visualising changes
and improvements to the given classifier in response to given changes in labelling. Thereby, users can
also gain an understanding of which choices affect the classifiers, and hence contribute to understandable
and explainable machine learning models.

Since there are multiple visualisation and interaction techniques, the following research question
arises: How do characteristics of these techniques and datasets affect performance and user experience

47
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Figure 5.1: The mVis tool, showing the SPLOM at top left, detailed scatterplot top middle, sim-
ilarity map top right, and parallel coordinates bottom right, for the MNIST2 dataset.
The partitions panel at bottom left shows the currently defined classes (label alpha-
bet). Instances are colour-coded by class, here green for 1s and blue for 0s. Instances
with confirmed labels are shown as crosses in the scatterplots and similarity map and as
thick lines in the parallel coordinates. Suggestions from the classifier are shown as solid
circles in the scatterplots and similarity map and as thin lines in the parallel coordinates.

for visual interactive labelling tasks? This key question will be broken down into several sub-questions
in Section 5.3. To address them, this chapter describes a comparative user study of three well-known in-
teractive visualisation techniques for visual labelling: similarity map, scatterplot matrix (SPLOM), and
parallel coordinates [Inselberg 1985]. Using the existing mVis visual data exploration tool introduced in
Chapter 4, nine machine learning experts labelled two multivariate datasets in each of these three views
separately. The quantitative measures from these tasks are accumulated and compared to each other and
to active learning algorithms. In addition, the techniques are compared to each other in terms of user
experience. The results confirm that involving the user in labelling using visual exploration facilities can
improve the machine learning process and enhance the ML model understanding.
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Figure 5.2: The SPLOM with scatterplot visualisation of the WB dataset, as used by a test parti-
cipant. Instances are colour-coded by class. Instances with confirmed labels are shown
as crosses, suggestions from the classifier are shown as solid circles. The user has selec-
ted the scatterplot of Life Expectancy versus Male Employment in the SPLOM on the
left and has selected the instance of Kuwait for labelling in the detailed scatterplot view
on the right. The dialogue on the upper middle of the screen asks the user to confirm
the label for that instance.

5.2 Methods
Using mVis, the performance of three different visualisation techniques for labelling a multivariate data-
set was compared. Figure 5.1 shows mVis with a two-class subset of the MNIST dataset [LeCun et al.
1998]. Since prior studies have shown that users prefer t-SNE over PCA and MDS for interactive visual
labelling, t-SNE [Maaten and Hinton 2008] algorithm is used for the similarity map.

For the SPLOM, all bivariate combination are shown in a matrix, and the user can select any of them to
examine more closely in the scatterplot view. In the Parallel Coordinates view, the analyst can rearrange
or invert dimensions and filter out records.

In general use, mVis allows the analyst to select one or multiple instances for labelling. Every time
a set of instances is labelled, the Weka implementation of a Random Forest Classifier [Hall et al. 2009]
runs in the background and suggests potential labels for all currently unlabelled instances by colour-
coding according to their suggested class. Instances whose labels have been confirmed by the user are
made visually distinct from instances with labels suggested by the classifier. Confirmed instances are
shown as crosses in the scatterplots and similarity map and as thick lines in the parallel coordinates.
Suggestions are shown as solid circles in the scatterplots and similarity map and as thin lines in the
parallel coordinates. For the experiment described in this chapter, the user was restricted to selecting a
single instance at each step, which was then assigned its pre-assigned class.

Later, in order to assess the classification performance of the interactive visual labelling techniques,
three methods were used: active learning, greedy selection, and random selection. Three active learning
methods were used: Smallest Margin, Entropy-Based Sampling, and Least Significant Confidence and
the average accuracy in each step was used to compare the results. For the greedy method, the classifier
was run for all possible instances for labelling, and the one with the best accuracy was selected. Greedy
selection represents the best possible labelling result, and is the theoretical upper limit of what could be
achieved by any visual labelling technique or active learning strategy. The random selection of instances
was run 200 times, and the average accuracy in each step was used to compare the results. Random
selection represents a practical lower limit for the accuracy a classifier should achieve.

The work of Bernard, Hutter et al. [2018] was chosen to describe the strategies of users for selecting
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(a) MNIST4.

(b) WB.

Figure 5.3: Parallel coordinates visualisations of (a) the MNIST4 and (b) the WB datasets. In-
stances are colour-coded by class. Instances with confirmed labels are shown as thick
lines, suggestions from the classifier are shown as thin lines.

labelling candidates. There, selection strategies were first grouped into data-centred and model-centred
strategies. Data-centred strategies focus on the characteristics of data instances and include Dense Areas
First, Centroid First, Equal Spread, Cluster Borders, Outliers, and Ideal Label. Model-centred strategies
rely on visual feedback of the current state of the classification model and include Class Distribution
Minimisation, Class Borders, Class Intersection, and Class Outliers. In addition to the strategies defined
by Bernard, Hutter et al. [2018], in this study, another strategy was observed, which was named Visual
Centre. Here, users would select instances in the centre of the visualisation they were currently focussed
on.

5.3 Research Questions and Hypothesis
A comparative experiment was conducted to evaluate the effectiveness of three individual visualisation
techniques for interactive labelling, based on which records were selected by test users for labelling.
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(a) MNIST4. (b) WB.

Figure 5.4: Similarity maps of (a) the MNIST4 and (b) the WB datasets. Colours indicate classes.
Instances with confirmed labels are shown as crosses, suggestions by the classifier are
shown as solid circles.

The three techniques were similarity map, SPLOM with scatterplot for a detailed view, and parallel
coordinates. The comparison was both quantitative and qualitative.

The study presented in this chapter, addresses RQ3: How to compare VA techniques with traditional
automated algorithms for building ML models? This question is further expanded into four research
questions.

Research Question 5.1 (RQ5.1): How do three individual visualisation techniques, (similarity map,
SPLOM, and parallel coordinates) compare in terms of accuracy of the resulting classifier?

Research Question 5.2 (RQ5.2): How does interactive visual labelling (IVL) with the three visualisa-
tion techniques compare to non-interactive labelling based on active learning (AL) selection?

Research Question 5.3 (RQ5.3): Which of the three visualisation techniques are rated higher by users
in terms of user experience and confidence during selection of records to label?

Research Question 5.4 (RQ5.4): Do users adopt different labelling strategy depending on the visual-
isation being used?

Furthermore, in this chapter, a hypothesis is formed and tested for these questions.

Hypothesis 3 (H3): Interactive visual labelling techniques can surpass non-interactive labelling tech-
niques based on active learning in terms of accuracy.

5.4 Study Design
The user was asked to choose 30 instances for labelling, one instance at a time, each of which was then
labelled with its (correct) pre-assigned label from the ground truth.

Regarding RQ5.1, the accuracy of the classifier was computed after each time an instance had been
chosen for labelling, using the current training set (i.e. the set of records with confirmed labels at a
particular point in time). The accuracy is simply the number of correct predictions divided by the total
number of predictions. This experiment was concerned with which instances users chose to label, not
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with the actual labels which were then assigned. Hence, users were not actually asked to assign a label,
simply to confirm the correct label from the ground truth (see Figure 5.2). To this end, after a user
had chosen an instance to label, a pop-up window appeared showing the (pre-assigned) label for that
instance, and was simply asked for confirmation. Once the label had been confirmed, the classifier ran in
the background to refresh suggested labels for currently labelled instances. Participants were provided
neither with guidance nor with any active learning suggestions about which instance to label next, but
were asked to choose freely, and without time constraints. Participants were also not informed about the
accuracy of the ML model as they worked, but they were shown a chart about accuracy after they had
finished working with each dataset.

Regarding RQ5.2, the three active learning algorithms were run for each dataset, the accuracy of the
resulting classifier was calculated for each step, and then averaged over all three AL algorithms. This
provided the baseline for comparison. The ratings for RQ5.3 were collected after the three visualisation
had been labelled for each dataset. The labelling strategies used by each user for RQ5.4 were determined
by analysing the thinking aloud protocol, screen recording, and interview responses.

5.4.1 Datasets

Three datasets were used in this study. The first dataset is a two-class subset of the classic MNIST
dataset [LeCun et al. 1998], comprising images of hand-written digits in one of two classes: 0s and
1s. It was used to explain mVis to the participants in the tutorials phase of east test session. The 784
dimensions of the original dataset were reduced to 12 by PCA [Jolliffe 2002] and named D1 through
D12. The test dataset comprised 200 records with 100 records in each class. This dataset will be referred
to as the MNIST2 dataset and is shown in Figure 5.1.

The second dataset is an MNIST dataset with 50 records in each of four classes (200 records total),
representing the digits 0, 1, 6, and 7. Like the first dataset, this dataset was reduced to 12 dimensions
with PCA. This dataset will be referred to as the MNIST4 dataset. Figure 5.3a and Figure 5.4a show this
dataset in parallel coordinates and a similarity map.

The third dataset is a socio-economic statistical dataset published by the World Bank [TWB 2018].
Each record is a country. The ten dimensions represent attributes such as Urban Population, Life Expect-
ancy, and Access to Electricity. The 192 records (countries) are classified (unevenly) into one of four
economic classes: lower income, lower-middle income, upper-middle income, and high income. This
dataset will be referred to as the WB dataset. Figure 5.2, Figure 5.3b, and Figure 5.4b show this dataset
in SPLOM with scatterplot, parallel coordinates, and a similarity map.

5.4.2 Participants and Setup

The study was carried out in a quiet lab. Ten participants were initially recruited for the study, but one
was later eliminated from the analysis due to technical problems. Of the nine remaining participants,
three were female and six were male, with a median age of 29 years. All participants were familiar
with machine learning and scatterplot visualisations. Two-thirds (6 of 9) were familiar with SPLOM
and parallel coordinates. Two-thirds (a different 6 of 9) had previous experience in labelling multivariate
datasets.

During their test session, participants were asked to think aloud, and to ask questions if they experi-
enced any difficulties. At the end of the session, participants were encouraged to make suggestions for
improvement. On average, each session lasted around 55 minutes, with the shortest and longest being 43
and 78 minutes, respectively. All sessions were captured by screen recording, and three sessions were
additionally recorded with an external video camera for later analysis.
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5.4.3 Procedure and Tasks

The test procedure with each participant comprised of four phases:

1. Opening: Introduction and background questionnaire.

2. Tutorial: Demonstration of mVis and practice with the MNIST2 dataset.

3. Test Session: Six experimental conditions, labelling each of the two datasets with each of the three
visualisations.

4. Closing: Interview with the participant.

In the first phase, the facilitator explained the purpose of the study and the participants then filled out a
background questionnaire. The questionnaire included four binary (yes/no) questions. In these questions,
it was asked whether the participant had used machine learning algorithms, scatterplots, SPLOM, and
parallel coordinates.

In the second phase, The facilitator first demonstrated the functionality of mVis with the MNIST2
dataset, explaining each of the three visualisation techniques and labelling two of the records. Then,
users were asked to label a further 28 records by using all three visualisations.

In the third phase, each test user performed the labelling task for each of the two datasets (MNIST4
and WB) with each of the three visualisations (similarity map, SPLOM with scatterplot, and parallel
coordinates). Each visualisation was maximised to full screen. The presentation order of these six exper-
imental conditions was grouped by dataset but otherwise counterbalanced, as can be seen in Table 5.1.
In each experimental condition, the test participant was asked to choose 30 instances for labelling (one
after the other), which were then assigned their pre-assigned label (class). The experimental conditions
were grouped by the dataset. One dataset was loaded, and labelling was completed with the three visual-
isations, then the second dataset was loaded for the final three visualisations. After each dataset had been
explored with all three visualisations, test participants were asked to rate their experience and confidence
in labelling the records for each visualisation:

Q1 From 1 to 5, how do you rate the labelling experience with {visualisation technique}?

Q2 From 1 to 5, how confident were you when selecting a new record with {visualisation technique}?

where 1 was the worst and 5 the best rating. In the Q1, it was clarified to participants to rate the experience
of interactive labelling and not the ease of the user interface or other aspects.

Finally, in the fourth phase, the facilitator interviewed the test participants about their experience and
encouraged them to offer any feedback or suggestions they might have.
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C1 C2 C3 C4 C5 C6

T P1 M-S M-X M-P W-S W-X W-P
T P2 M-S M-P M-X W-S W-P W-X
T P3 M-X M-S M-P W-X W-S W-P
T P4 W-P W-S W-X M-P M-S M-X
T P5 W-P W-X W-S M-P M-X M-S
T P6 W-X W-P W-S M-X M-P M-S
T P7 M-X M-P M-S W-X W-P W-S
T P8 W-X W-S W-P M-X M-S M-P
T P9 M-P M-S M-X W-P W-S W-X

Table 5.1: The presentation order of experimental conditions. Each row indicates a test participant
and columns indicate the order of test conditions. The first letter indicates the dataset
(M for MNIST4 and W for WB). The second letter indicates the visualisation (S for
similarity map, X for SPLOM and scatterplot, and and P for parallel coordinates).
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(a) Accuracy (MNIST4).
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(b) Accuracy (WB).

Figure 5.5: The accuracy of visual labelling depends on the interactive visualisation technique. The
y-axis represents the accuracy, the x-axis is the cumulative number of instances already
labelled (step number). Greedy selection (green) represents a theoretical upper limit.
Random selection (black) represents a practical lower limit.

5.5 Results
The results of the study will be discussed for each of the three visualisation techniques (similarity map,
SPLOM with scatterplot, and parallel coordinates) in terms of the four research questions from Sec-
tion 5.3.

5.5.1 Similarity Map

In terms of accuracy (RQ5.1), the similarity map outperformed SPLOM with scatterplot and parallel
coordinates when using both the MNIST4 and WB datasets (see Figure 5.5).

Comparing with active learning (RQ5.2), the similarity map consistently outperforms active learning
in both datasets, as can be seen in Figure 5.6.

Regarding the ratings of users (RQ5.3), the similarity map was rated higher than the other two visu-
alisation techniques, both in terms of labelling experience and selection confidence, as can be seen in
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Figure 5.7. Indeed, for labelling experience with the MNIST4 dataset, the mean rating of the similarity
map was statistically significantly higher than the other two visualisations. All other differences in mean
ratings were not statistically significant.

For both rating questions, the similarity map was rated slightly higher for the MNIST4 dataset than
the WB dataset. This could be because the clusters in the MNIST4 dataset were more distinct and visible
than those in the WB dataset, as shown in Figure 5.4b. This problem persists even when the projection
algorithm for the similarity map is changed from t-SNE to PCA or MDS [Kruskal 1964].

When using the similarity map, the strategies used by participants (RQ5.4) were similar to strategies
observed during previous studies [Bernard, Hutter et al. 2018]. In the similarity map, users tended to
find distinct clusters from the beginning by using a Centroid First strategy. Therefore, the similarity map
technique suffers less from the bootstrap problem (Figure 5.5). After identifying distinct clusters, users
tried to find outliers and make clear borders. The second main strategy used by participants was Class
Intersection, i.e. selecting records which are in the wrong visual section. These records are closer to
a different cluster than their own. Based on the observations, identifying suspected incorrectly labelled
records in a similarity map was found by the participants to be a rather well-defined task. Note that the
accuracy of these labelling strategies depends on the quality of the similarity map, e.g., how faithfully
distances in the high-dimensional data space are preserved in the 2d projection space. An interesting
variant for a future experiment would be to include measures for projection quality in the similarity map,
for which different visualisation techniques exist (see, for example, [Schreck et al. 2010]).

5.5.2 SPLOM with Scatterplot

Regarding the accuracy of the technique (RQ5.1), SPLOM with scatterplot performed slightly worse
than similarity map with both datasets, but slightly better than parallel coordinates with the MNIST4
dataset and similar to parallel coordinates with the WB dataset (Figure 5.5). The advantage of SPLOM
compared to similarity map and parallel coordinates was that it suffered less from the bootstrap problem.

SPLOM with scatterplot outperformed the active learning techniques (RQ5.2) for both datasets, as can
be seen in Figure 5.6.

Regarding the ratings of users (RQ5.3), the SPLOM with scatterplot technique was rated slightly lower
than similarity map and slightly higher than parallel coordinates for both rating questions and with both
datasets, as shown in Figure 5.7. However, the only statistically significant difference is the lower mean
rating for labelling experience for SPLOM with scatterplot compared to similarity map with the MNIST4
dataset. Regardless of the ratings for both datasets being similar, users stated that selecting candidates
with the WB dataset was easier, since the dimension names were semantically meaningful and therefore
more understandable.

Regarding labelling strategy (RQ5.4) when using the SPLOM with scatterplot technique, users first
attempted to find a scatterplot with well-spread records and then used the Centroid First strategy on
this scatterplot. Later, some users selected scatterplots with well-separated clusters. Others preferred
to select scatterplots which lacked well-separated clusters and attempted to separate them. In order to
find outliers, some users tried brushing and linking. Most users tended to select a single scatterplot
and continued to use it instead of changing to a different scatterplot. With the MNIST4 dataset, which
lacks semantically meaningful dimensions, users selected a scatterplot with a clearer visual pattern, for
example linear. Furthermore, users often selected scatterplots located in the centre of the SPLOM and
ignored those in the outer reaches.

In general, users selected scatterplots from the SPLOM which: (a) have a specific pattern (for ex-
ample, linear), (b) have well-separated classes, (c) have overlapping classes, (d) if the dimensions have
semantically meaningful labels they select an interesting pair of dimensions based on the context, (e)
randomly select scatterplots located in the centre of the SPLOM.
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The disadvantage of the SPLOM with scatterplot technique is that it has many false positives. That is,
clusters were not always visible and well separated, which confused some users. Moreover, the SPLOM
technique was sometimes overwhelming for users.

5.5.3 Parallel Coordinates

Understanding parallel coordinates was hard for the users, mainly due to their lack of experience with
this technique. Participants who were familiar with parallel coordinates performed better and were more
confident during the experiment. Identifying patterns was difficult, particularly with the MNIST4 dataset.
Furthermore, parallel coordinates tended to be more cluttered, and therefore selections became more
random over time. Some users were frustrated when they were forced to select points from parallel
coordinates. One of the advantages of parallel coordinates was that it well guided the user’s visual
attention to extremes (peaks and valleys), enabling the users to identify these values easily. Furthermore,
when users attempted to make borders for clusters in one single axis, using parallel coordinates was
beneficial. On the other hand, one disadvantage of parallel coordinates was its lack of visual feedback,
as stated by some users. Moreover, since users often focused on the centre of visualisation, the ordering
of the axes was important when using parallel coordinates. Observations showed that if users rearranged
the order of the axes, their experience could improve.

Regarding the accuracy of the classifier (RQ5.1), parallel coordinates performed about as poorly as
SPLOM with scatterplot with the MNIST4 dataset and slightly worse than SPLOM with scatterplot with
the WB dataset. Parallel coordinates also suffered from the bootstrap problem, due to the users’ tendency
to select extreme values (peak and valleys) in the beginning and ignore the middle records, which usually
included lower-middle income and upper-middle income countries.

Parallel coordinates outperformed active learning (RQ5.2) in both datasets, although active learning
catches up as more instances are labelled (see Figure 5.6).

Regarding user ratings (RQ5.3), parallel coordinates received the lowest ratings, both in terms of
labelling experience and selection confidence for both datasets, as can be seen in Figure 5.7. The only
statistically significant difference is the much lower mean rating for labelling experience for parallel
coordinates compared to similarity map with the MNIST4 dataset. However, the mean can be misleading.
Half of the users rated parallel coordinates 5 out of 5 when applied to the WB dataset, while the other half
rated it poorly. The observations and interviews confirmed that some users strongly preferred parallel
coordinates when the clusters were well separated, whilst others favoured other techniques.

In terms of labelling strategy (RQ5.4), participants carried out the following strategies when using
parallel coordinates: (a) selected records on a single axis based on their values, (b) focused on a com-
bination of two axes, i.e., a line, (c) focused on the shape of the polyline or general picture in three or
more axes, (d) focused on peaks and valleys, (d) randomly selected records on one axis or on a line
between two axes. The users’ main strategy was to select extreme values in an axis located in the centre
of the visualisation. The Density First strategy was a common strategy used by the participants. At the
beginning of the tasks, 60 per cent of the participants used the default order of the axes, and 40 per cent
customised the order (mVis allows to reorder axes interactively). Users rarely changed the order of the
axes afterwards. When using parallel coordinates, users paid less attention to having an equal spread
strategy, and therefore, the clusters were more imbalanced. Users also tried to identify class borders, but
in the MNIST4 dataset finding such borders was difficult.

When using the parallel coordinates technique, some users occasionally became frustrated and selected
random records located in the visual centre of the plots. A recurring problem was the users’ tendency
to selecting outliers, leading to the bootstrap problem, as can be seen in Figure 5.5. Furthermore, users
selected higher values (peaks) more than lower (valley) values which lead to an imbalance in the selection
of peaks and valleys. When using parallel coordinates, users deployed the Ideal Labels strategy more
than when using other techniques.
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(a) Similarity map (MNIST4).
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(b) Similarity map (WB).
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(c) SPLOM with scatterplot (MNIST4).
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(d) SPLOM with scatterplot (WB).
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(e) Parallel coordinates (MNIST4).
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(f) Parallel coordinates (WB).

Figure 5.6: Accuracy of the three interactive visual labelling techniques compared with active
learning (red) for the MNIST4 and WB datasets. The semi-transparent coloured areas
show the 25% and 75% quartiles.
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(b) Selection confidence.

Figure 5.7: Mean ratings given by the test users for (a) labelling experience and (b) selection con-
fidence for each of the three visualisations on a scale of 1 (worst) to 5 (best). Black
lines represent standard error.

5.6 Discussion
The results of the study are promising as they show that the classification performance of interactive
visual labelling techniques can outperform those of active learning selection strategies. Therefore, this
chapter proves that Hypothesis 3 is true. As shown in Figure 5.6, with the WB dataset, all three visu-
alisations perform better after around 10 labelled instances than active learning. In contrast, with the
MNIST4 dataset, active learning catches up with the interactive visual labelling techniques as the num-
ber of labelled instances increases.

Only a very limited number (9) of test users participated in this study. It would need to be repeated with
a much larger number of test users, in order for the results to be more generalisable. The results were also
obtained for very specific choices of visualisation and datasets, and their generalisation would require
additional validation. Labelling a dataset can be a dull task. Three participants mentioned interactive
visual labelling is enjoyable and feels like playing a game.

Some visualisations appear to be better suited to interactive visual labelling than others. The similarity
map seems to be the preferred view for labelling. This can be attributed to the fact that the similarity
map reduces data, gives an overview of the similarity relationship, and is less complex than SPLOM
with scatterplot or parallel coordinates. However, it was observed that when some example labelling is
already available, some users prefer to use SPLOM with scatterplot for a more detailed insight into the
high-dimensional data space and for label selection. It was also observed that users who are familiar with
parallel coordinates perform better and are more confident using it for label decision making.

Parallel coordinates and SPLOM are suitable for finding relationships between dimensions, identifying
clusters, and exploring data to make sense of it. Visualisation of the labelled data in parallel coordinates
could be improved. As the number of labelled instances increases, it can become overwhelming for the
user to find the next instance to label. A problem found in all three visualisation techniques is that of
false labelling. When an instance is close to a specific cluster, the user believes the instance belongs to
that cluster and does not select it for labelling.

Regarding differences in the two datasets, it was observed that the MNIST4 dataset appeared very
cluttered in the parallel coordinates visualisation, and patterns were difficult to discern. Therefore, the
results for this test condition may have suffered. In the WB dataset, the dimensions had semantically
meaningful names, and users felt more comfortable choosing the axes in the parallel coordinates visual-
isation and choosing a particular scatterplot from the SPLOM. For example, users often chose the Access
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to Electricity axis for labelling low income countries.

It is interesting to observe in Figure 5.6 that active learning often performs worse than random selec-
tion, at least in terms of the simple metric of the ML model accuracy. However, this study only looked
at the first 30 labelled instances and AL strategies often start poorly (bootstrap problem), but outperform
random selection in later phases [Attenberg and Provost 2011; Kottke et al. 2017].

In terms of improvements, one user mentioned a lack of control over the arrangement of scatterplots
within a SPLOM. Another user mentioned that parallel coordinates and SPLOM might be adapted to
show the most “important” dimensions. Such an idea is presented in Section 6.5. Active learning was also
mentioned by a participant as an additional form of visual guidance [Ceneda et al. 2016] for visualisation
techniques. Another participant was curious to see the accuracy of the classifier after the selection of
every instance, together with the number of already labelled instances from each class.
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Chapter 6

Multimodal Interaction for Data Analysis

“The best and most beautiful things in the world cannot be seen or even touched - they must
be felt with the heart.”

[ Helen Keller, American author, 1880-1968 ]

Interaction is the heart of visual analytics. VA with traditional interaction devices, such as mouse and
keyboard, can help the analyst to explore and build ML models. But how other interaction modalities,
including multi-touch devices and eye-tracking can foster this process? This chapter presents two novel
techniques for using multi-touch interfaces for exploring regression models collaboratively. Moreover,
it is proved that indirect gaze input can be an additional interaction method for exploring multivariate
datasets.

6.1 Introduction
Interaction an essential part of both Information Visualisation (InfoVis) and Visual Analytics (VA). In one
of the early definitions for InfoVis, Card et al. [Card et al. 1999] describe visualisation as the “mapping of
data to a visual form that supports human interaction in a workplace for visual sense-making”. Although
the concept of interaction in InfoVis and VA has a long history [B. Lee et al. 2012], novel device and
display technologies, and novel multimodal interaction possibilities [B. Lee et al. 2018] including gesture
recognition, eye tracking, or data physicalisation offer new possibilities.

Visualisation techniques should be adapted according to the type of data, user task, and display me-
dium. For example, scatterplots allow an analyst to quickly recognise patterns and relationships between
any two of n dimensions of a multivariate dataset and have become a common technique for data visual-
isation of multivariate datasets. It is also possible to plot all the possible bivariate projections of a dataset,
resulting in a matrix of n2 scatterplots, called a scatterplot matrix (SPLOM) [Cleveland 1993]. In a re-
lated technique, drawing all n dimensions as vertical axes next to each other and drawing each record as
a polyline intersecting each axis, produces a chart known as a parallel coordinates plot [Inselberg 1985].
This chapter presents three different types of interaction modalities that can facilitate data exploration,
labelling, and analysis.

Section 6.3 presents challenges and solutions for collaborative and single-task multi-touch interaction
on large vertically-mounted high-resolution displays. The techniques presented are well-suited for col-
laborative analysis tasks with scatterplots and SPLOM. They are potentially generalisable for other data
exploration and visual analytics practices but require further implementation and evaluation.

There are various direct and indirect interaction techniques to explore multivariate datasets on a large
display. In Section 6.4, an affordable technique using a secondary wireless handheld device is introduced.

61
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By using this technique, the analyst can perform traditional visual analytics tasks including selection,
brushing, and linking on a handheld device which is projected on the large display. As a proof of
concept, the technique is implemented for exploring scatterplots in a multiple linked-view application.

Finally, Section 6.5 presents an eye-tracking based solution for visual exploration of parallel coordin-
ates. As a proof of concept, a framework and heuristics for interactive axis reordering is introduced.

6.2 Research Questions and Hypothesis
This chapter addresses RQ4: How to use non-traditional interactions to improving building and ex-
ploring the ML model and foster collaboration in teams? Various devices can be used to interact with
visual analytics techniques. In this thesis, the focus is on large multi-touch displays, and eye-trackers.
Therefore; RQ4 is broken down to two research questions.

Research Question 6.1 (RQ6.1): How to use large multi-touch displays to explore the machine learning
model and foster collaboration in teams?

Research Question 6.2 (RQ6.2): How to use indirect gaze input to explore a multivariate dataset?

According to these two questions, two hypotheses are formed and tested in this chapter.

Hypothesis 4 (H4): Large multi-touch displays facilitate collaborative analysis of ML models.

Hypothesis 5 (H5): Indirect feedback from gaze can improve interaction and visual exploration of a
multivariate dataset.

6.3 Large Vertically-Mounted Multi-Touch Displays
Large high-resolution displays are becoming an affordable option for the visualisation of data [Reda et
al. 2015]. Large displays have proved to be effective for tasks such as comparative genomics analysis
[Ruddle et al. 2013], graph topology exploration [Prouzeau et al. 2016a], and sensemaking [C. Andrews
et al. 2010]. Large vertically-mounted (landscape-orientation) high-resolution multi-touch displays are
particularly effective for collaborative analysis by small teams. However, previous research has often
focused on horizontally-mounted tabletop surfaces or vertically-mounted displays with more distant in-
teraction [Jakobsen and Hornbæk 2014]. In this chapter, a set of user interactions to support SPLOM
analysis on vertically-mounted displays are introduced. These techniques help analysts to efficiently
select a scatterplot from SPLOM and explore it collaboratively.

Some physical and virtual interactions with large displays were described in the previous literature.
Modalities range from natural interactions like speech, body tracking, gaze, and gestures to the use of
secondary control devices like mobile phones, tablets, or Wii controllers [Khan 2011]. Of these, multi-
touch interactions provide a fluid and intuitive interface suitable for up-close interaction in front of the
display by small groups. Although there are studies about collaborative interaction with large displays
(e.g. [Vogt et al. 2011; P. Isenberg et al. 2009]), they usually focus on single-user interaction [Liu
et al. 2017]. Since typical multi-touch interactions do not support collaboration, more research needs
to be done on cooperative gestures, modalities and the dynamics of group work around these devices.
Cooperative gestures are known to enhance the sense of teamwork and increase the participation of team
members [Morris et al. 2006].

Screen size and resolution are particularly important for information visualisation of multivariate data-
sets. Having a large display allows multiple, linked views, such as SPLOM and parallel coordinates
[Inselberg 1985] to be provided simultaneously. If the screen is not high-resolution, the user experience
of near distance interaction decreases significantly. For instance, on screens with less than sixty pixels
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Figure 6.1: Two users collaboratively analyse a dataset on a large vertically-mounted multi-touch
screen. User A on the left drags a Regression Lens, while user B on the right adapts
the degree of the regression model using the floating toolbox. The display is an Eyevis
84-inch 4K/Ultra-HD 60Hz multi-touch LCD monitor with a resolution of 3840×2160.

per inch, the user is not able to read from the screen up-close [Ashdown et al. 2010]. Furthermore, users
can make more observations with less effort using physical navigation (e.g., walking) rather than virtual
[Reda et al. 2015]. More screen space can be used to either provide a better overview of a dataset or
to provide more details of a portion of it. For example, users can see both an entire SPLOM, specific
scatterplots, and parallel coordinates plots at the same time. As a result, users may have the opportunity
to gain more insight into large datasets.

Previous studies [Jakobsen and Hornbæk 2014] suggest that vertically-mounted displays are more
suited to parallel tasks within a group, due to reduced visual distraction and the possibility to share
information through physical navigation like turning the head or walking. On tabletop displays, if users
are not on the same side of the table, the shared view often needs to be reoriented.

This section addresses the design gap between standard interaction techniques for large, multi-touch
displays and advanced interaction techniques and visual feedback for collaborative scatterplot and
SPLOM analysis. Design concepts for such interaction techniques have been implemented as a proof
of concept and are presented. The techniques include scatterplot selection from SPLOM, collaborat-
ive regression model analysis, and an extension of the Regression Lens [Shao, Mahajan et al. 2017] to
include a floating toolbox. As a proof of concept, the techniques are developed on a large display.

6.3.1 Proposed Interaction Techniques

Current standard multi-touch interaction techniques are not designed for collaboration on vertically-
mounted high-resolution displays [Liu et al. 2017]. Here, by proposing single-user and collaborative
interactions for the analysis of scatterplots and SPLOM on such devices, Hypothesis 4 is tested. Some
of the interaction techniques are based on the concept of the Regression Lens [Shao, Mahajan et al.
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(a) Interacting with a Regression Lens. (b) Selecting a new scatterplot.

Figure 6.2: A user is drags a Regression Lens with the right hand while adjusting the lens with the
left hand (a). A user drags a scatterplot with the right hand while panning through the
SPLOM with the left hand (b).

(a) Analysing scatterplots collaboratively. (b) Passing interesting scatterplots.

Figure 6.3: Two users collaboratively analyse a scatterplot (a). Both users create a regression model
for a subset of selected data. The created regression models are displayed in their
partner’s respective lens as well, supporting comparison of local regressions. In (b), one
user analyses a scatterplot, while their partner selects interesting plots in the SPLOM
and passes them over by holding the background and swiping the right hand.

2017], which supports real-time regression analysis of subsets of a scatterplot through lens selection
and manipulation. With Regression Lens, a user can select a local area in a scatterplot and observe the
regression model of selected points [Shao, Mahajan et al. 2017]. Shao, Mahajan et al. [2017]. proposed
operations to adjust and manipulate the regression model shown in the Regression Lens, such as changing
the degree of the regression model or inverting its axes. Figure 6.1 illustrates some of the suggested
collaborative gestures on an 84-inch 4K/ULTRA-HD@60HZ multi-touch LCD monitor produced by
Eyevis [eyevis 2018]. The user on the left finds interesting scatterplots and passes them to the user on
the right. The user on the right analyses the plots using the Regression Lens [Shao, Mahajan et al. 2017].
In the rest of this section, four interaction designs for both collaborative and single scatterplot analysis
are introduced. Later in Section 6.3.2, an implementation of these techniques is demonstrated.
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Figure 6.4: A user selects a scatterplot of interest from SPLOM by touching and holding the left
hand on the scatterplot. Swiping with the right hand then passes the selected scatterplot
to the right hand side of the display for more detailed analysis.

6.3.1.1 Lens and Floating Toolbox

Magic lens techniques like DragMagics [Prouzeau et al. 2016b] and BodyLens [Kister et al. 2015] are
used to explore local regions in a visualisation. An extended version of the basic lens concept provides
for more fluid interaction with large multi-touch displays. For instance, as shown in Figure 6.2a, after
a region of interest has been selected in a scatterplot using the dominant hand (here the right hand),
a toolbox appears next to the other side of the lens (near the non-dominant hand), where the user can
use sliders and touch buttons to adjust the lens. For example, the user can change the degree of the
regression model. The lens can be dragged with one hand, while being adjusted with the second hand,
thus potentially speeding up performance.

6.3.1.2 Two-Handed Interaction with SPLOM

A SPLOM consists of pairwise scatterplots arranged in a matrix, with dimensions typically labelled
in the diagonal cells. Since the number of dimensions is usually high, panning and zooming within the
SPLOM is almost inevitable. With common multi-touch interactions, the scatterplot or dimension label is
dragged to the corner of the SPLOM for panning. It is not feasible to zoom into or out of a SPLOM while
dragging another object. Based on two-handed interaction on tablets [Yee 2004], a two-handed technique
is proposed whereby the dominant hand is responsible for dragging items, while the non-dominant hand
performs common operations. As shown in Figure 6.2b, the user drags a scatterplot around to reorder the
plots in the SPLOM. Panning is performed by the non-dominant hand. With this two-handed technique,
the interactions needed to reorder scatterplots in SPLOM can be reduced.
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Figure 6.5: A Regression Lens containing a cubic regression model is shown. At the left side of the
Regression Lens, a floating toolbox with various options is visible.

6.3.1.3 Collaboration using Gestures

On large vertically-mounted collaborative displays, it is not always desirable to move from one side of the
screen to the other to perform a task. Instead, collaborative gestures can be used to pass objects. Based
on the ideas of Liu et al. [2017], collaborative gestures on scatterplots are proposed. In Figure 6.3b, the
user on the left analyses a scatterplot, while the user on the right selects another scatterplot of interest. By
holding the background of the SPLOM with one hand, and swiping with the other hand, the scatterplot
is passed over to the partner. The partner can then decide whether or not to load the scatterplot for
comparison. This technique can also be used for other tasks. For example, in Figure 6.4, the user selects
a scatterplot of interest from a SPLOM by touching and holding it with one hand (here, the left hand)
and swipes the other hand in the direction of the analysis panel to load that scatterplot for more detailed
analysis.

6.3.1.4 Collaborative Lens

In collaborative analysis, visual feedback plays an essential role. When two analysts work on a vertically-
mounted display without proper visual feedback, they need to communicate more and turn their heads
more often. A collaborative lens can help ameliorate this issue. As illustrated on Figure 6.3a, the user on
the left side of the screen creates a regression lens and regression model in blue. Meanwhile, the user on
the right side of the screen creates their regression lens and regression model in red. Both users can see
the other user’s regression model reflected in their own regression lens.

6.3.2 Implementation

Proof-of-concept interaction techniques for single-user and collaborative analysis of scatterplots and
SPLOM have been implemented on a vertically-mounted Eyevis 84-inch multi-touch display with a
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Figure 6.6: The left and right panels are scatterplots for User A (left) and B (right) respectively.
The central area of the screen contains a shared SPLOM. User A on the left draws an
arbitrary rectangle and is interested in the quadratic regression model of the selected
records, shown in red. User B on the right chooses to observe the cubic regression
model of the selected area, shown in blue. User A can see the cubic regression model
of the right panel in dashed blue and user B can see the left panel regression model in
dashed red. Selected scatterplots are highlighted in green in the SPLOM.

resolution of 3840 × 2160 pixels and a frame rate of 60 Hz. Figure 6.1 demonstrates a typical setup of
the implemented application with two users working on the screen.

The prototype application is written in Java, using JavaFX for the user interface and the TUIO [Kal-
tenbrunner et al. 2005] and the TUIOFX library [Fetter and Bimamisa 2015] for multi-touch interaction.
To enable multiple users to work on the same screen with different widgets and user interface elements
at the same time, a concept called focusArea from the TUIOFX library is used [Fetter et al. 2017]. The
application follows the widely-used Model-View-Controller (MVC) architecture.

6.3.3 Use Case

The use case for the prototype application is to improve interaction with the Regression Lens on multi-
touch screens. The developed interaction techniques were tested with the well-known car dataset from
the UCI Machine Learning Repository [Lichman 2013].

For the interaction technique shown in Figure 6.1, user A (on the left) and user B (on the right) select
two different plots from the shared central area containing the SPLOM. For this technique, the user holds
and touches a scatterplot with one hand and swipes to the right or left with the other hand to maximise
it. This technique is elaborated in detail in Section 6.3.1.3. After that, users A and B select an area in the
scatterplot separately and toggle the Collaborative Lens option in the Floating Toolbox. As described in
Section 6.3.1.4, each user is now able to observe the regression model of the other user in their regression
lens. Figure 6.1 shows two users working side by side on a large vertically-mounted multi-touch display,
after creating two separate Regression Lenses and toggling to the Double Lens option. The exact state
of the screen is shown in Figure 6.6. A single Regression Lens with a floating toolbox is visible in
Figure 6.5.

6.3.4 Large Multi-Touch Displays Findings

The concepts described in this section are first designs of appropriate touch interaction for the visual
interactive analysis of scatterplot data on large vertically-mounted high-resolution multi-touch displays.
The interactions support small-group collaborative analysis, by exchanging patterns or settings from
one user’s view to the others. Therefore; Hypothesis 4 is successfully tested. The interaction design
is currently based on user selections, but is generalisable to other basic techniques. The interaction
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Figure 6.7: The analyst in the middle is explaining the dataset on the large screen to other team
members in a meeting. She is using a secondary handheld device to perform selection
on an interesting part of the data.

techniques have been implemented as a proof of concept. They still need to be evaluated with real users
and real tasks as part of future work. Mapping out the design space for this combination of visualisation
and display device may well yield further interesting interaction designs.

6.4 Secondary Handheld Device
Since both SPLOM and parallel coordinates charts aim to visualise the whole dataset in one view, a large
number of pixels are needed on the screen, which motivates the use of larger displays. Such displays
are commonly used in meeting rooms for decision making and presentation. Techniques developed by
researchers to interact with large displays in VA applications include natural language [Srinivasan and
Stasko 2018], multi-touch, full body [Kister et al. 2017], and secondary handheld devices [Tsandilas
et al. 2015].

Each of these interaction modalities has strengths and weaknesses. Natural language is a powerful tool
to interact with the screen from afar, but some tasks including data selection cannot easily be performed
by this interaction alone. Multi-touch is another popular input modality, but may cause fatigue in a long
meeting, since it requires the analyst to interact with the screen up-close. In such situations, using a
handheld device connected wirelessly to the display can be a suitable option, visualising the data on the
large display while at the same time giving analyst(s) the ability to control views and issue queries from
a distance as well as up-close.

This section describes how a multiple linked-view information visualisation application can benefit
from adding a secondary handheld device as an additional controller for data exploration. In particular,
it is shown how common VA techniques like brushing, linking, and querying can be facilitated using a
secondary handheld device. This concept can be generalised to other multiple linked-view applications.
Fig. 6.7 shows the implemented system being used in a meeting room.
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(a) Scatterplot view on the secondary handheld display.

(b) Parallel coordinates view on the secondary handheld display.

Figure 6.8: Any view can be shown on the secondary handheld device to perform tasks such as
brushing and linking from afar.
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6.4.1 Proposed Interaction Techniques

It is becoming common for large displays to have wireless connectivity. Even without this feature, it
is often possible to attach a wireless adapter to a monitor and then connect it to a secondary handheld
device. In this chapter, a 12.3-inch tablet (Microsoft Surface Pro, 5th Gen) is used as a secondary
handheld device to interact with a large 82-inch 4K display with wireless connectivity (Samsung 88th

series).

The mVis tool presented in Chapter 4 is used for this prototype. The system is dock-based, making
it possible to detach any view and drag it to a secondary device. Moreover, it is possible to have two
identical views – one on the large display and the other on the secondary handheld device – so that
everyone in the room can observe how interactions with the handheld view are performed.

6.4.1.1 Brushing and Linking from Secondary Device

Brushing and linking are standard techniques for interactive visual analysis of large multivariate datasets
[Buja et al. 1991]. They refer to the practice of selections (brushing) and changes (linking) in one
view being simultaneously reflected in all other views. Collaborative brushing and linking ensures that
interactions on the dataset by one collaborator are visible for everyone working on the data [P. Isenberg
and Fisher 2009]. Therefore, in the presented system, if a user selects an area on a secondary handheld
device using either a scatterplot or parallel coordinates view, the selected records will also be highlighted
in the large display. For the other collaborators to have a clear understanding of brushing and linking
procedure, the view shown on the secondary handheld device is always projected onto the main screen.
This projected view includes both visualisations of the data and interactions performed on each handheld
device. Fig. 6.8 demonstrates brushing and linking in scatterplot and parallel coordinates views.

6.4.1.2 Querying from Secondary Device

Another common technique in interactive visual analysis is to make a query after selecting an area in a
view containing a set of records. In the system, the analyst can select an area in a scatterplot by lasso
selection and then perform a search query to find similar areas in other scatterplots in the dataset. It
is essential to visualise any such selections on the large display, so all collaborators in the meeting are
informed about it. Therefore, an identical view on the large display shows the selection and parameters
of the query issued on the secondary handheld device. Fig. 6.9 illustrates how a query on the secondary
handheld device is visualised on the large display.

6.4.2 Second Handheld Device Findings

Preliminary experiments show that using a handheld device can be an appropriate proxy to interact with
data visualisations on a large display, especially if several users are gathered around it. A secondary
handheld device can be easily passed around for individual interaction, while the main display remains
in sight. This is particularly useful for more detailed interactions, such as the specification of a query
or the exact positioning of a regression lens widget [Shao, Mahajan et al. 2017]. A lightweight solution
is possible using component-based application design in conjunction with the multiple-view desktop
extension capabilities of current operating systems. Fig. 6.10 shows situations that can benefit from this
type of interaction. A natural extension is to provide not one, but multiple secondary handheld devices
for distributed, collaborative interaction by team members. To this end, a client-server implementation
should be adopted.
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(a) A query performed on the secondary handheld device.

(b) The query and its result on the large display.

Figure 6.9: The user can initiate a query on the secondary handheld device and visualise the results
on the large display.
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(a) Meeting in front of the screen. (b) Meeting around a table.

Figure 6.10: Two scenarios in which an analyst can pass over the secondary handheld device to
other collaborators.

Figure 6.11: An analyst exploring a parallel coordinates plot using an inexpensive eye-tracker.
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6.5 Eye-Tracking and Gaze
Parallel coordinates are suitable for exploring correlations between neighbouring dimensions and obtain-
ing a concise overview of an entire dataset (see Chapter 4). Unfortunately, as the number of dimensions
increases, the parallel coordinate plot can suffer from visual clutter. In this case, the analyst may over-
look an axis or become frustrated by the visual noise of less important ones. Since different users are
interested in different parts of the plot, it is essential to provide them with an adaptive ordering method.
One way to facilitate ordering is to use an eye-tracker to measure interesting or unexplored parts of the
plot. Shao, Silva et al. [2017] showed that using eye-tracking can help an analyst find more patterns in
a multivariate dataset in less time. To test Hypothesis 5, two approaches to help the analyst reorder the
axes based on an area-of-interest (AOI) are presented. Figure 6.11 illustrates the application setup.

6.5.1 Gaze Technique

The mVis system presented in Chapter 4 implements adaptive parallel coordinates which support mul-
tiple interaction techniques. The user can invert an axis and filter records based on the values of a
dimension by interacting with the axis. For reordering, based on guidance types in visual analytics sys-
tems [Ceneda et al. 2016], three main strategies for an adaptive parallel coordinate plot are presented.
The basic strategy is to let the analyst manually reorder the plot. Alternatively, by using eye-tracking, the
system can guide the analyst more effectively. The system visualises the axes which the analyst explored
more than others. Later, the user can either manually reorder the axes based on the provided information,
or ask the system to do it automatically.

6.5.1.1 Manual Reordering

In the presented approach, the analyst can perform manual reordering in three ways. Firstly, left and right
arrow buttons are provided at the top of each axis. If the user presses the right arrow button, the axis will
move one to the right, and all the other axes will shift one to the right. A similar event will occur if the
user presses the left arrow button. Secondly, the user can drag and drop an axis onto another axis. As
a result, these axes will switch their places. Thirdly, the user can drag an axis and drop it between two
other axes.

6.5.1.2 Visual Guidance

By using an AOI based approach, the system stores the areas that the user has looked at. There are two
types of AOI in the design, (1) the area between two axes, and (2) the axis itself. A heatmap will assist
the user in recognising areas that are more explored. While exploring the plot, a heatmap is overlaid on
top of the area, either as a transparent colour between two axes or by changing the background colour of
the label of the axis. Figure 6.12a shows the (usually hidden) internal heatmap of areas that the user has
focused on so far. Figure 6.12b shows the plot after axis reordering.

6.5.1.3 Automatic Reordering

In addition to visual guidance, the system reorders the axes upon request by the analyst. The system
assigns a score to each axis, which represents the amount of time the user has spent on it. Netzel et al.
[2017] found that users jump between axes while investigating parallel coordinates, rather than focusing
on the areas between two axes. Therefore, in the sorting algorithm, looking at the axis itself has more
impact on the score than spending time in the area between two axes. If the area between axisA and
axisB is called AREAA,B, the score assigned to axisA in timestamp t is calculated as: score(axisA, t) =

α× f (axisA, t) + f (AREAA,B) + f (AREAA,C) where axisB and axisC are neighbour axes of axisA, f is the
amount of time spent on an AOI, and α is a coefficient.

The user can ask the system to sort any number of axes. The axes can be shown either from left to
right, right to the left, or centre to side. Netzel et al. [2017] demonstrate how analysts are biased toward
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D1 D2 D3 D4 D5 D6 D7

(a) Before reordering, with the (usually hidden) internal eye-gaze heatmap.

D7 D2 D5 D1 D6 D3 D4

(b) After reordering axes from centre to side.

Figure 6.12: (a) The analyst exploring a parallel coordinates plot of the well-known cars dataset.
(b) Based on eye-gaze information captured during exploration, the system suggests
a new ordering of the axes. In this variant, unexplored dimensions are pushed to the
centre of the plot.

the centre and pay less attention to the sides in parallel coordinates. Therefore, the default is to sort the
axes from centre to side. The analyst can decide whether to sort the axes in descending or ascending
order. The former is called organisation, and the latter exploration. In organisation mode, the focus is
on pushing insignificant axes to the side, and in exploration mode, the system aims to show unexplored
information to the user.

By pressing the Reorder button, the system plays an animation to show the new location of the moving
axis. Later, the axis will move to the new place, and the other axes will shift. So as not to overwhelm
the user, only two axes are moved in each step. The technique is implemented using Java. For gaze
input, an inexpensive EyeTribe tracker placed under the display, and configured to capture data at 30
Hz. The distance between the device and a participant is 50 cm. The application is run on a PC running
Windows 10 and a 25-inch display with a resolution of 2560 × 1440 pixels and a frame rate of 60 Hz.
The application uses Google Cloud Speech-to-Text API for speech recognition.
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6.5.2 Eye-Tracking Visual Analysis Findings

The working prototype shows that using gaze information, based on AOI, can be an appropriate tool to
interact with visualisation of multivariate datasets. This finding is proof to Hypothesis 5. In the future, a
formal user study can further test this hypothesis.
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Chapter 7

Future Work

“Cheers to gambler that lost everything he owned,
Nothing was left, except whim of gambling once more.”

[ Rumi, Persian poet, 1207–1273. ]

The directions for further research follow the three main directions covered in this thesis: (a) local
patterns (Chapter 3), (b) interactive visual labelling (Chapters 4 and 5), and (c) multimodal interaction
(Chapter 6).

7.1 Local Scatterplot Patterns
Chapter 3 of the thesis presented a technique to search for and explore local patterns in SPLOMs. The
algorithm has some room for improvement.

The presented algorithm is designed for general use cases. Therefore, some false positive patterns
are found. This is due to not having a clear definition of patterns for a specific dataset. These matches
can be excluded later by manual parameter tuning or use of the relevance feedback module. However,
in future, it would be desirable to incorporate guidance to help the user find hidden local patterns. As
an example, active learning algorithms can be integrated into the relevance feedback module, instead of
one-time feedback from the user. Also, the user might be able to deselect undesired patterns rather than
selecting the relevant ones.

An underlying question of scatterplot similarity is how the perception of patterns in scatterplots by
analysts can be modelled, and eventually described by descriptors. In Pandey et al. [2016], an experiment
to assess how analysts describe specific patterns in scatterplots was presented, which found that these
were not easy to model using Scagnostics features. The shape and model-based descriptors used in the
proposed approach are one choice, but additional features could be defined (or even learned from training
data) to describe patterns more compatible with user perception and interpretation.

Since the descriptors are parameters in the approach, additional ones can be added to the system in
the future. It would be particularly interesting to learn which descriptors work better with which kinds
of dataset. After experimenting with L1, L2, and Quadratic Form distance functions, L1 was found to
be good enough for the chosen datasets, possibly because of the coarseness of the descriptor’s grid. It is
possible that for other datasets and use cases, other distance functions might work better. Thus, it could
be interesting to add distance functions as a parameter.

Since a sliding-window approach is used, the search may return many possible positions and areas of
similarity within a given scatterplot. A simple rectangle is currently used to highlight matching patterns.
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It would be interesting to research more advanced visual representations of local matches in a scatterplot.
Also, if the data is labelled, instead of using the sliding-window approach, algorithmic complexity could
be reduced by only comparing clusters of records with the same label, especially when the scatterplots
are dense. Conducting visual cluster separation in scatterplots would be another alternative to the sliding-
window approach.

Finally, it would be interesting to develop ground truth and benchmark datasets to further compare
algorithms for local pattern discovery in scatterplots, adding to existing benchmarks for global scatterplot
features [Scherer et al. 2012].

7.2 Interactive Visual Labelling
Chapter 4 of the thesis presented mVis, a tool for interactive visual labelling of multivariate datasets.
In mVis, partitions are coupled with related dimensions based on interactions of the user. Currently, the
system captures interactions performed with mouse and keyboard. In future, several modalities including
eye tracking and voice recognition might help the system to find relationships between dimensions and
partitions.

Since the labelling process is performed iteratively, it might be beneficial to keep a history of all user
interactions and operations. The user may wish to revisit earlier labelling decisions, and possibly update
the alphabet and partitions. Providing a visual history of labelling provenance, and how to propagate
changes to earlier labelling decisions is an interesting research topic for future work. This also raises the
need for appropriate comparative visualisation techniques [Gleicher et al. 2011], to contrast the different
selections.

The results of the pre-study verified that mVis is moving in the right direction, but still lacks some
key features. The observations showed that both participants could work with mVis without the need for
much assistance. It confirmed that mVis is easy-to-use and fast to learn. Nevertheless, both participants
asked for an interactive help module, and one of the participants requested a guidance module. Using this
module, the system will show the correlation between dimensions and partitions as extra information.
Moreover, the system could generate an automatic description of visible patterns in the dataset and guide
the user toward them.

It is planned to release mVis as standalone, cross-platform software. First, however, several critical
features, including proper dataset import and export, history tracking, and selection of dimensions still
have to be implemented. Moreover, further case studies need to be conducted, including possibly more
detailed and longer-term case studies using the full MILC methodology.

Currently, mVis has two primary types of data visualisation, scatterplots and parallel coordinates, but
further visualisations could be added. For example, maps could be added to view records with attributes
representing geo-coordinates. Also, more sophisticated glyphs can be used in scatterplots to carry more
information to the analyst. The most important panel to add is a table view to show the full set of attribute
values of records in the dataset.

Finally, one possibility to provide an analyst with interesting initial views in order to start labelling
would be to use Scagnostics or Pargnostics features [Behrisch et al. 2018] to guide the user to relevant
views.

Regarding Chapter 5, while the findings of this comparative study are interesting, they also depend
on a number of choices made and would merit further investigation. For the experiments, a number of
settings were fixed, which could be varied as well. Three specific visualisations (similarity map, SPLOM
with scatterplot, and parallel coordinates) were chosen and these were used individually for the labelling
task. Many visual analytics systems provide multiple linked views and dynamic brushing. Indeed, mVis
provides these features too, but they were not used in this study in order to simplify its design. Multiple



Interactive Visual Labelling 79

Figure 7.1: An example of solving visual analytics tasks on a large vertically-mounted multi-touch
display.

linked views and brushing could possibly mitigate some of the disadvantages of single techniques, and
lead to a hierarchical selection strategy. For example, users might want to select a group of points as
labelling candidates from the similarity view, and then switch to SPLOM or parallel coordinates for
detailed selection and labelling. In future, support might be included for, say, automatic ordering of
dimensions in parallel coordinates or arrangement of the plots in the SPLOM.

To compare classification performance, three different active learning algorithms (Smallest Margin,
Entropy-Based Sampling, and Least Significant Confidence) were selected. While the selected al-
gorithms are robust and applicable for different classifiers, the design space of active learning is large
and more comparisons could be made.

In the accuracy comparison experiments, it is assumed that the user always assigns the true (ground
truth) label for a data point, once it has been identified for labelling. While this corresponds to the
notion of a user being an “oracle” in active learning, labelling errors could also be considered in a
future experiment. Users could be allowed to freely pick a label, or even introduce a new label during
interactive visual labelling. This would increase experimental complexity, but allow even more realistic
assessments. Moreover, the analyst may want to assign multiple classes to a single record, or have a label
alphabet with a heartache.

In many practical situations, the type and number of labels are not known in advance, but are de-
termined in an iterative process. Also, in many practical problems, high-dimensional data attributes are
often complemented with additional metadata and background information. For example, countries like
in the WB dataset could be presented as map views. Including visualisation of such additional data, and
studying how it is used during the labelling process, would be an interesting experiment to do.

In future work, it would be interesting to study the dynamics of the labelling process. For example, are
there learning effects during labelling, where the choice of labels changes over time? In the experiment
described in Chapter 5, the number of labels was fixed at 30. A future experiment could let the user
decide when to stop the labelling process. To this end, feature and ML model space visualisations could
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(a) Interacting with the screen using multi-touch (up
close).

(b) Interacting with the screen using eye-tracking and
speech (distance).

Figure 7.2: Two types of interaction with a large screen.

be helpful for the user to assess when label saturation has been reached.

7.3 Multimodal Interaction
Chapter 6 presented multiple ways for data interaction using novel devices. For future research, these
modalities can be combined or improved for visual data analysis.

7.3.1 Large Multi-Touch Displays

Large vertically-mounted multi-touch displays, like the one shown in Figure 7.1, can be used to sup-
port collaborative visual analytics. A potential line of improvement is to adjust the view to the user’s
need and situation. In [Shao, Silva et al. 2017], the authors propose using eye tracking to infer user
interest and using this information to recommend additional relevant but previously unseen views for
exploration. While that work was developed as a desktop application, it might be interesting to incor-
porate eye-tracking support to recommend views for small collaborative team work on a large display.
Moreover, adding group activity recognition and therefore pro-active interaction, can support collabora-
tion by preventing information overload [Gordon et al. 2013].

Using only multi-touch for input can be overly restrictive. Other modalities need to be considered
to utilise the power of these screens fully. By adding natural language interaction, the user can directly
interact with the visual analytics application from a distance. Incorporating eye-tracking can help narrow
down what the user is looking at or is interested in.

Figure 7.2a shows a setup of a large vertically-mounted multi-touch display. Due to the nature of touch
screens, using multi-touch as the sole input modality can have some drawbacks, including the gorilla arm
effect [Goodwins 2008], having to be within touching distance of the screen, and not being able to reach
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all parts of the screen without stepping sideways. Figure 7.2b demonstrates an alternative scenario, in
which the user is using eye-tracking and speech to interact with the scatterplot.

7.3.2 Second Handheld Device

Collaborative interaction for visual data analysis raises several interesting research challenges. For ex-
ample, the server could track each members’ data selection operations, and annotate them in the main
display. The type of tracking and annotation is expected to depend on the analysis task. For example,
when several experts collaborate to find local regression models in a given scatter plot, then each mobile
display should show the current ML models proposed by the team members in a comparative way. Also,
team members may interact with one another by passing and adapting each other’s proposed regression
models. Generally speaking, a collaborative visual analysis system should provide analysis provenance
information, to allow comprehension of which operations have been performed by whom.

Another interesting problem is to adapt the display shown on the mobile devices to the respective
device characteristics, such as display size and resolution. Depending on the device capabilities, the
presentation and interaction operations should be tailored to fit by adapting the amount of data displayed
and possibly changing the visualisation metaphor used (semantic zoom).
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Chapter 8

Concluding Remarks

“From the depth of the black earth up to Saturn’s apogee,
All the problems of the universe have been solved by me.
I have escaped from the coils of snares and deceits;
I have unravelled all knots except the knot of decease.”

[ Avicenna, Persian polymath, 980 - 1037. ]

The novelty of the thesis is the presented line of research to bridge the gap between interaction mod-
alities, and machine learning models for visual data analysis. Through the thesis, this pioneer research
line is presented and validated by five hypotheses.

8.1 Résumé and Hypotheses
Here, the novelty of this thesis and validation of hypotheses are revisited.

Hypothesis 1 (H1): Exploratory visual analytics, together with similarity search, is well suited for find-
ing local patterns in scatterplot spaces.

Chapter 3 presented a novel pipeline to search for local patterns in the scatterplots of a scatterplot mat-
rix. Model-based and shape-based descriptors are used to compare the initial query pattern with other
patterns. Relevance feedback is then used to refine the search. An implementation of the approach has
shown its usefulness for various datasets and that it works in near real-time. Finally, the limitations and
possible extensions of the approach were discussed.

Hypothesis 2 (H2): By using interactive visualisation techniques, an analyst can build a machine learn-
ing ML model for a multivariate dataset.

Chapter 4 demonstrated a new approach to make partitions on a multivariate dataset that does not
contain any labelled record. Using appropriate views including partition similarity map, the analyst can
manually label records with the help of classification, clustering and active learning algorithms. The
result of the process is a properly labelled and partitioned dataset. An implementation of the approach
called mVis had shown its usefulness for real-world datasets.

Hypothesis 3 (H3): Interactive visual labelling techniques can surpass non-interactive labelling tech-
niques based on active learning in terms of accuracy.

Chapter 5 presented a study comparing three interactive visualisations with each other and with active
learning for the purpose of labelling a multivariate dataset. The study also explored subjective user
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ratings for the three interactive visualisations and discussed the labelling strategies employed by users
with each them. All three interactive visualisations performed better than active learning algorithms,
in terms of classification accuracy (assuming the user always assigns the correct label to a selected
data instance). The similarity map performed better than both SPLOM with scatterplot and parallel
coordinates in both the MNIST4 and WB datasets. Nevertheless, parallel coordinates and SPLOM with
scatterplot are useful in their own right, especially for datasets where the dimensions have semantically
meaningful names. The results support the view that a user-in-the-loop approach is beneficial for creating
training datasets.

Hypothesis 4 (H4): Large multi-touch displays facilitate collaborative analysis of ML models.

Chapter 6 presented three novel techniques to use emerging interaction devices for data analysis. In
the first section, it is demonstrated how two analysts can use a large multi-touch display collaboratively
to analyse multivariate datasets. The same concept is applied in the second section, but multiple devices,
including a handheld device is used for data analysis using scatterplots, and SPLOM.

Hypothesis 5 (H5): Indirect feedback from gaze can improve interaction and visual exploration of a
multivariate dataset.

The third section of Chapter 6, presents a novel interaction technique with an inexpensive eye-tracker
to re-arrange axes in a parallel coordinates.

8.2 Epilogue
When I started my doctoral degree, the title of my proposal did not contain the term machine learning.
The focus was initially on data analysis using novel interaction modalities, such as large multi-touch
displays, and eye-trackers. During the large multi-touch display project, a research gap between inter-
actions with novel devices, and training ML models was found. Therefore, the focus shifted to create
VA techniques that are not merely useful for data exploration, but for more advanced interactions with
ML models. Although a small number of workshops have been held in recent years to address the gap
between ML and interaction modalities using VA, the topic is still in its infancy. I hope by reading this
thesis, researchers can come up with exciting new ideas.

There follows a list of publications written while doing this PhD, which were published in international
peer-reviewed journals, conferences, and workshops.
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