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Abstract

This seminar paper introduces the reader to the topic of Voronoi treemaps, a data visualization
technique for hierarchically structured data. The technique combines two separate fields:
Voronoi diagrams and treemaps. The techniques have no obvious connection, but can be
merged to produce a practical data visualization.

In order to establish a good understanding of Voronoi treemaps, this paper explains the
concept of Voronoi diagrams and some of its history. It also touches on the construction
of Delaunay tessellations and their connection to Voronoi Diagrams. Finally, treemaps and
the application of Voronoi diagrams to treemaps are presented, followed by an overview of
current work and applications around Voronoi treemaps.
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Chapter 1

Introduction

A Voronoi treemap is a data visualization technique through which hierarchically structured data is
represented recursively with Voronoi diagrams. It combines two major techniques, namely Voronoi
diagrams and treemaps. To introduce the reader to the topic, the process is explained step by step.

First, Voronoi diagrams are presented in Chapter 2, covering the underlying theory as well as history
and applications of the technique. Next, in Chapter 3, the reader is given an overview of the dual of the
Voronoi diagram, the Delaunay tessellation, and its relevance to the Voronoi diagram is explained.

Chapter 4 describes treemaps and Voronoi treemaps. This chapter also looks at current approaches to
and applications of Voronoi treemaps, and presents some active work on the subject at Graz University
of Technology. Finally, Chapter 5 concludes this survey paper with an outlook and pointers to further
resources.
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Chapter 2

Voronoi Diagrams

Voronoi diagrams are used to split a plane into regions surrounding a given set of points, called sifes. In
simple terms, a Voronoi diagram indicates which points on the plane are closest to which of the sites.
Hence, the plane is divided into regions of influence of the chosen sites. This has many uses, ranging
from pure aesthetics to data analytics. A simple form of the Voronoi diagram for three sites can be seen
in Figure 2.1.

2.1 Applications

Voronoi diagrams have a wide variety of uses. While some find the diagram itself to be pleasing to the eye,
computer scientists use them for many functional applications. This includes basic distance problems, the
classical postman problem, classification, and various clustering algorithms [Aurenhammer et al. 2013,
pages 3-5]. Furthermore, it is used in computer graphics to generate textures.

Voronoi diagrams are also used in other fields, often under other names. The Thiessen polygons
in geometry or meteorology, Wigner-Seitz zones in chemistry and physics, and domains of action in
crystallography are examples of Voronoi diagrams in other fields [Aurenhammer et al. 2013, pages 1-2].
In biology, Voronoi diagrams are used to model cells or bone micro architecture [Bock et al. 2010; Li
et al. 2012]. Some uses of Voronoi diagrams, such as nearest neighbor query, span multiple areas of
science [Okabe et al. 2000, pages 10-11].

2.2 History

As far as is known, the first mentions of Voronoi diagrams were in the 17™ century when René Descartes
claimed the solar system consisted of vortices. While he did not explicitly define the regions, the
process behind his idea is very close to what is understood to be Voronoi diagrams nowadays [page 1
Aurenhammer et al. 2013; Okabe et al. 2000, page 6].

The idea was formalized by the mathematicians Carl Friedrich Gauf in 1840, Gustav Lejeune Dirichlet
in 1850, and Georgi Feodosjewitsch Voronoi in 1908. These formalizations led to the structure that is
now considered to be a Voronoi diagram [page 3 Aurenhammer et al. 2013; Okabe et al. 2000, page 6].

2.3 Basic Theory

To construct a Voronoi diagram, a set of at least three points, or sites, is required. The term sites is
used to better differentiate them from generic points on the plane. A Voronoi diagram of just two sites is
simply the bisector, which is the locus of all points at equal distance to these two sites, as can be seen in
Figure 2.2.



4 2 Voronoi Diagrams

Figure 2.1: The Voronoi diagram for the three points (sites) m, n, and 0. [Illustration created by the author
using GeoGebra [GeoGebra 2021].]
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Figure 2.2: The bisector describes the locus of all points at equal distance to two points. [Tllustration
created by the author using GeoGebra [GeoGebra 2021].]

In its basic form, the Voronoi diagram is constructed on a Euclidean plane which means all distances
are given as:

d(a,b) = V(a1 — b1)? + (ay — by)? Q2.1)

for two sites, a and b. With this, the half plane between two sites can be defined as:
H(a,b) = {x|d(a,x) < d(b,x)}, (2.2)

where the bisector of @ and b acts as a boundary for this half plane. A Voronoi region is then formed by
taking the intersection of all n — 1 half planes in the set of n sites. Such a region can be seen in Figure 2.3
in the form of a triangle around point g. Such a Voronoi region contains all points closest to its site. In
Figure 2.3, this means that all points on the plane within the triangle are closer to g than to any of the
other sites (e, f, h).

Two more definitions are necessary to understand a Voronoi diagram. A Voronoi vertex is any endpoint
within the Voronoi diagram. The edges connecting the Voronoi vertices are known as Voronoi edges.
Both can be seen in Figure 2.3.
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Figure 2.3: The triangle around point g indicates its Voronoi region. The line segment i is a single
Voronoi edge. The two points that define the Voronoi edge, r and s, are examples of Voronoi
vertices. [Illustration created by the author using GeoGebra [GeoGebra 2021].]

2.4 Algorithms

There are four types of construction algorithms for Voronoi diagrams. While they do not vary greatly in
performance, they have very different approaches to building the diagram.

2.4.1 Incremental

The most intuitive way of constructing a Voronoi diagram is the incremental method. To construct the
diagram, the sites from the set are added to the plane one by one. Every time a new site is added, the
diagram is adapted to the new site. This means finding all now faulty edges, deleting them, and adding
the new correct edges to accommodate the new site. Once all sites have been added, the final Voronoi
diagram has been constructed.

This method has the benefit of being on-line, which means the set of sites does not have to be complete
when starting the algorithm as they are read in one by one. Additional sites can be added later on. The
downside to this algorithm is that it has a worst case runtime of O(n?). However, the expected runtime
for a randomized algorithm is O (nlogn) [Aurenhammer et al. 2013, pages 18-23].

2.4.2 Divide & Conquer

The Divide & Conquer algorithm for Voronoi diagrams needs the entire set of sites right from the start.
This is because, as the name suggests, it splits the set into a left half and a right half, according to the
placement of the sites on the plane. Once the sites are split up, this is repeated recursively, until the
only sets remaining have two or three sites each. For these small sets, simple Voronoi diagrams are
easily constructed. Once the diagrams are constructed for all sets, the smaller diagrams are merged back
together. After the final two diagrams have been merged, this represents the finished Voronoi diagram
for the set of sites.

This algorithm has an upper boundary of O(nlogn) for all cases and therefore performs better than
the incremental algorithm in general [Aurenhammer et al. 2013, pages 24-27].

2.4.3 Sweep Line (Fortune’s Algorithm)

First introduced by Steven Fortune [Fortune 1986], the sweep line algorithm uses a line which moves
across one axis of the plane generating events in a queue as it moves. The closer the event is to the sweep
line, the earlier it will be handled. There are two types of events: site events and circle events. Site events
occur at each site in the set. A circle event is created during a site event and describes a point at which
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Figure 2.4: The black horizontal line is the sweep line moving downwards. All the black sites and
their events have already been handled. The red dot indicates a circle event, through which most
likely a new Voronoi vertex is found. [Screenshot taken by the author using a self-constructed demonstrator.]

a parabola vanishes from the beach line that is formed by the site events. During a circle event, a new
Voronoi vertex can appear.

As soon as the sweep line has crossed the entire plane, the Voronoi diagram is constructed. This
algorithm also has an upper boundary of O(nlogn), which means it is comparable in performance to
the Divide & Conquer algorithm. A screenshot of the algorithm in action can be viewed in Figure 2.4
[Aurenhammer et al. 2013, pages 28—30].

2.4.4 Lift to 3-Space

This construction algorithm works by lifting the sites into the 3™ dimension. This is usually done via a
simple projection like:
z=x+ y2. 2.3)

This projection can be viewed in Figure 2.5. Each site is lifted up from a 2-dimensional plane to be
represented on a paraboloid. Once the projection is done, the convex hull of all sites on the paraboloid is
required. There already exist many algorithms that can be used to compute the convex hull of the sites.
These algorithms have the added advantage that they have been used for some time and are optimized
and easily accessible.

By translating the resulting convex hull back to two dimensions, what remains is the Voronoi Diagram
of the specified set of sites. As with the previous algorithms, the upper boundary on runtime is O (n log n)
[Aurenhammer et al. 2013, pages 31-34].
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Figure 2.5: Sites in a plane are lifted up to 3-dimensional space by being projected onto a paraboloid.
In this case z = x2 + y2. [Ilustration created by the author using GeoGebra [GeoGebra 2021].]

2.5 Weighted Voronoi Diagrams

In data visualization, it is often desirable to assign higher weight to certain properties. This is also possible
for Voronoi diagrams. Weighted Voronoi diagrams can be constructed in a number of ways. The idea
remains the same: the higher the weight of a certain site, the larger the resulting Voronoi region should
become. This can be seen in Figure 2.6. The standard Voronoi diagram of the four sites is represented
by the dashed line. The solid line is a weighted Voronoi diagram, where higher weight has been assigned
to sites a and b, increasing the size of their regions.

One way of computing weighted Voronoi diagrams is by using additively weighted or multiplicatively
weighted diagrams. This means the usual distance calculation, as in 2.1, is substituted by either:
addg(a,b) =d(a,b) —weight(a) 2.4)
for an additively weighted diagram or by:
multg(a,b) = d(a,b)/weight(a) 2.5)
for a multiplicatively weighted diagram. The main drawback of these methods is that they yield curved

rather then straight edges, which is often undesirable.

Thus, power diagrams are often used when weights should be taken into account. In power diagrams,
circles or spheres define the area of influence of a site. The circles’ or spheres’ radius is calculated via
the assigned weight. For example for the site p:

r(p) = \weight(p) (2.6)

This method then also yields a power function through which the influence of a site on a point can be
calculated:

pow(x,p) = (x — p) (x — p) — weight(p) 2.7)
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Figure 2.6: The dashed line represents the standard Voronoi diagram of the four sites. The solid
line is a weighted Voronoi diagram in which the sites a and b have been assigned higher weight,
increasing the size of their respective regions. [Illustration created by the author using GeoGebra [GeoGebra
2021].]

The function is O on the outline of the circle or sphere and negative within. For all points outside of
the circle or sphere it returns a positive value. An example of a power diagram for three points can be
seen in Figure 2.7.
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Figure 2.7: The power diagram for the three sites is represented by the blue lines. As can be seen from
the dashed circles, site a has a larger weight assigned to it compared to the other two sites. This
results in its region being considerably larger. [Tllustration created by the author using GeoGebra [GeoGebra
2021].]
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Chapter 3

Delaunay Tessellation

When discussing the Voronoi diagram, it is imperative to also talk about the Delaunay tessellation, as
they are connected in many ways. While a Voronoi diagram constructs regions around every site in the
set, the Delaunay tessellation uses the sites as endpoints for edges that form polygons [Aurenhammer
et al. 2013, pages 11-14]. The Delaunay tessellation is the dual of the Voronoi diagram, and one can be
derived from the other.

3.1 Construction

To construct a Delaunay tessellation, all sites which are co-circular, while not including any other sites
within the circle, are joined via an edge. So for every two sites that can be connected via a circle, one
edge to the tessellation can be added [Aurenhammer et al. 2013, page 12].

3.2 Delaunay Triangulation

If the sites used for the Delaunay tessellation are in general position, it turns into a Delaunay triangulation,
since all polygons in the tessellation are triangles. Sites are in general position, if no three of them are
co-linear and no four of them are co-circular. In this case, any three sites that are co-circular and whose
circle does not include other sites, can be joined to form a new triangle in the triangulation. Such a
Delaunay triangulation can be seen in Figure 3.1 [Aurenhammer et al. 2013, page 12].

3.3 Relevance to Voronoi Diagrams

The Delaunay tessellation or Delaunay triangulation is the dual of the Voronoi diagram. This means they
have several properties that relate to each other and also means that one can be constructed from the other.
For every Voronoi edge there is a Delaunay edge, for every Voronoi vertex there is a Delaunay face, and
for every Delaunay vertex there is a Voronoi region. This can also be seen in Figure 3.1. This duality
is very useful for many algorithms. Whenever one structure is given, the other can be computed, which
provides many possibilities to approach the construction of either one of them [Aurenhammer et al. 2013,
page 12].

11
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Figure 3.1: The dashed line represents the Voronoi diagram of the set of seven sites. The solid line
is the corresponding Delaunay tessellation, which in this case is a Delaunay triangulation, since
the sites are in general position. [Illustration created by the author using GeoGebra [GeoGebra 2021]]



Chapter 4

Voronoi Treemaps

Voronoi treemaps are a combination of treemaps and Voronoi diagrams with the goal of visualizing data
hierarchies in a practical way. In standard treemaps, the space allocated to children is divided into strips or
rectangles recursively. In Voronoi treemaps, the space is partitioned into Voronoi regions. In interactive
treemaps, levels of the tree can be explored by zooming, expanding, and collapsing. An example of a
Voronoi treemap can be seen in Figure 4.1.

4.1 Treemaps

Treemaps were first introduced by Shneiderman [1992] in the 1990s. His team at the University of
Maryland then also developed the Treemap application, which was improved and maintained until 2004
[Shneiderman 2004].

The idea is to visualize hierarchical data with nested rectangles. The size and color of the rectangles
is determined by attributes of the corresponding tree nodes. A screenshot of the Treemap application is
shown in Figure 4.2. The visualization can be explored interactively by the user. Double-clicking a node
drills down into that subtree, right-clicking moves up one level.

4.2 Voronoi Treemaps

A Voronoi treemap is a data visualization which combines treemaps with Voronoi diagrams. Rather
than recursively subdividing rectangles, the space allocated to children at each level is determined by
constructing Voronoi regions.

The polygons in a Voronoi treemap are based on Voronoi diagrams. So for every polygon in the
visualization a site is placed to construct Voronoi regions for all the sites in the set, which is based on the
underlying hierarchical data. This way numerous different polygons are created and the available space
in the plane can be used optimally. Using weighted Voronoi diagrams, the size of the polygons to be
adjusted to represent an attribute of the data.

The ideal Voronoi treemap is interactive. With a static flat visualization, the data can still be represented
for smaller data sets, but it will become very crowded and unintuitive, the larger the data set becomes.
By making the visualization interactive, it is possible to hide deeper layers initially and render them only
when necessary. This can be managed either by monitoring the user’s zoom focus and level or through
dedicated choices the user makes to expand or collapse certain children.

13
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Figure 4.1: A hierarchy containing models of car shown in the Interactive Voronoi Treemap (IVT)
application. The first level indicates nationality, the second level manufacturer, and the third level
model of car. [Screenshot taken by the author using IVT [Oser et al. 2021].]
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Figure 4.2: Hierarchically structured data from the NBA basketball league shown with Treemap
4.1.1. At the top level, the two divisions (Central and Atlantic) are displayed on the left and right.
The next level shows the teams in each division. Finally, the colored rectangles show individual
players. Here, the size of the respective rectangle corresponds to the minutes per game and the
color to the points per game of each player. [Screenshot taken by the author using Treemap 4.1.1 [Shneiderman
2004]]
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Figure 4.3: Part of the Mozilla Open Directory hierarchy [Mozilla 2017] shown in InfoSky. The size
of a region is based on the number of entries in that branch. Each entry is a textual description of
a site on the web and is represented as a white dot. The dots resemble stars in a galaxy. [Screenshot
taken by the author using the InfoSky application [Andrews et al. 2002].]

4.3 History

The Voronoi treemaps technique was first introduced in 2002 by Andrews et al. [2002] and Granitzer
etal. [2004]. A team at Graz University of Technology and their partners developed a visual data explorer
based on Voronoi diagrams called InfoSky. Hierarchy levels were represented as Voronoi regions and
every subsequent level was made up of Voronoi regions within the parent region, as can be seen in
Figure 4.3. Individual documents in the hierarchy were represented by white dots. Three years later,
Balzer and Deussen [2005] published their paper on Voronoi treemaps, which coined the name for this
technique, without referring to the prior work.

4.4 Implementations

Currently the only published Voronoi treemap implementation is FoamTree by Carrot Search [Car-
rot Search 2021]. It is a commercial software library, but offers a free branded version too. FoamTree is
written in JavaScript and is intended to be integrated into web pages. The application is highly custom-
izable and allows broad personalization options to address any wishes a user might have. Even though
the possibilities are numerous with FoamTree, there is a large overhead that needs to be added to the
construction of every visualization. Data sets need to be in their expected format and no standard formats,
such as basic .json or .csv files, are supported. Also any personalization requires in-depth knowledge of
the application documentation or prior knowledge of Carrot Search applications.

In 2020, development on another Voronoi treemap implementation started at Graz University of
Technology under the working name “Interactive Voronoi Treemap” (IVT) [Oser et al. 2021]. Just like
FoamTree, it is a web-based application that offers an interactive Voronoi treemap that can be browsed
by the user. Whilst offering similar basic functionality, IVT is free of charge and open source. It works
with both standardized .json and .csv files and also offers example data sets to test the application. For
calculation of the Voronoi diagrams, [IVT uses the d3-voronoi-treemap library [LeBeau 2020] and PIXL.js
[Groves 2021] for all visual aspects. A screenshot of the application can be seen in Figure 4.1. Features
still to be implemented include: improvement of the UI, support for touch devices, browsing by zooming,
and some performance optimization.
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Chapter 5

Concluding Remarks

This paper serves as an introduction to Voronoi treemaps, which combine treemaps with Voronoi dia-
grams. Good starting points for further reading about Voronoi diagrams are Aurenhammer et al. [2013]
and Okabe et al. [2000]. Further reading on treemaps can be found in Shneiderman and Wattenberg [2001]
and Shneiderman [1992]. They include actual implementations, theoretical algorithms for constructing
treemaps, as well as the math behind the structures.

Work on the Interactive Voronoi Treemap (IVT) is still ongoing, although perhaps the project will be
renamed. The goal is to produce a viable open-source implementation of Voronoi treemaps.

17
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