Web Usability on the Cheap

Keith Andrews
Institute for Information Processing and Computer Supported New Media (IICM),
Graz University of Technology
A-8010 Graz, Austria

Abstract

As increasingly larger sections of the population migrate to the net, there are increasingly broader spectra of both web users and web content authors. A web site which is difficult to use will do little to encourage first-time visitors to return, regardless of the quality of its content. However, a small investment in the usability of a web site can produce large returns in terms of ease of use and return visits. This paper looks at the application of quick and dirty usability techniques to web site design and gives an example of a real world web site evaluation.

1 Introduction

Usability refers to “the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use.” [ISO 1998]. Usability engineering is a relatively recent field [Nielsen 1993, Mayhew 1999] which involves the formulation of an iterative process to improve usability of a system. More formal approaches to usability engineering follow an 11-stage lifecycle:

1. Know the User
2. Competitive Analysis
3. Set Usability Goals
4. Parallel Design
5. Participatory Design
6. Coordinated Design of Total Interface
7. Follow Platform Conventions
8. Prototyping
9. Usability Evaluation (Inspection and Testing)
10. Iterative Design
11. Follow-up Studies

However, such a formal approach can sometimes seem intimidating. Following the principle that any kind of user data is better than no user data, Jakob Nielsen extolled the virtues of “discount usability techniques” [Nielsen 1994b] using simplified, scaled-down versions of usability engineering techniques.
2 Web Usability

When asked by Forrester Research in February 1999, the top four reasons users gave why they would return to a web site were: high quality content (75%), ease of use (66%), quick to download (58%), and updated frequently (54%). Other factors came in at less 15%. Web usability techniques can be used to improve factors two and three.

A streamlined version of the usability engineering lifecycle for web site design, web site usability on the cheap, might look something like this:

1. Know your users and their tasks
 - web users in general
 - your own target user population.
2. Competitive analysis
 - look at similar sites.
3. Iterative design
 - design - evaluate - redesign

These steps are considered in turn in the following sections. For fuller treatment see Krug’s excellent book [Krug 2000] or [Nielsen 1999].

3 Know Your Users and Their Tasks

Several demographics and statistics regarding web users as a whole are publicly available. Several sites [MyComputer.com 2001; Upsdell 2001] provide aggregate browser statistics, such as the browser version, colour resolution, and screen resolution. For the web population as a whole, statistics now show (Jan. 2001):

- **Browser family**: 80 to 90% of users are using a version of Microsoft Internet Explorer, around 10 to 15% a version of Netscape.

- **Screen colours**: most users (70 to 80%) now have 16-bit or higher colour resolution, only around 10% are still limited to 8-bit (256 colours). However, this may change again as users migrate to small portable web browsing devices.

- **Screen resolution**: Around 50% of users have 800×600 resolution. Around 30% have 1024×768 or higher. Only around 10% currently have 640×480. Again, these proportions may change as some users move to lower resolution portable devices.

When asked about the main problems in using the web, users repeatedly cite slow speed and broken links as their top two concerns [GVU 1998]:

- **The World Wide Wait**: Connection speed statistics cannot reliably be determined automatically, but surveys indicate that around 50% of users are using modems at speeds of 56kbit and below. Other studies show that users are prepared to wait for around 10 seconds, but certainly no longer than 30 seconds. As shown in Table [Ⅰ] this means that for modem users, total page size has to be limited to around 60 kbytes.

- **Broken links**: The most recent SOWS survey [Sullivan 1999] found that almost 30% of all web pages contained at least one broken link. This is unacceptable, given that numerous tools are available to automatically scan web sites and report broken links.
<table>
<thead>
<tr>
<th>Access</th>
<th>Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Sec.</td>
</tr>
<tr>
<td>Slow Modem (28.8 kbit)</td>
<td>2 kb</td>
</tr>
<tr>
<td>Fast Modem (56 kbit)</td>
<td>4 kb</td>
</tr>
<tr>
<td>T-1 (2 Mbit)</td>
<td>125 kb</td>
</tr>
</tbody>
</table>

Table 1: Maximum acceptable page sizes for a total response time of 1 and 10 seconds, assuming 0.5 seconds latency before the server starts responding.

Knowledge about general trends and demographics provide a good starting point, but cannot replace detailed knowledge about the demographics and characteristics of the users of the particular web site in question. The following sources can be used to gather information about users of a particular web site:

- **Server logs**: Server log files can provide three very interesting sets of statistical data about the users of a web site:
 - Browser demographics: browser type and version, colour resolution, screen resolution, installed plug-ins, etc.
 - Page view statistics: which pages are most frequently accessed, which paths of links are most frequently traversed.
 - Search statistics: assuming the site has a local search engine, the search logs will reveal which terms users are most frequently searching for, and perhaps even more interesting terms users are searching but result in no matching pages.

- **Bug reports, feedback**: Email feedback and bug reports from the technical helpline can be used to gain an impression of problems users are having with a site.

- **Online survey**: Users of the site can be enticed into filling out a short survey by giving away something useful to them. This is a good way to gather information which cannot be gained from the techniques above: such as their sex, age, education, and connection speed.

Knowledge of users’ tasks for a particular web site can be garnered from server log files, but is perhaps best gathered by direct observation and contextual analysis [Beyer and Holtzblatt 1997]. That said, studies of users’ navigational behaviour in general have shown that given the choice of searching (typing words into a search box) or browsing (following links towards their goal), users:

- prefer to search
 - 50% are search dominant, 30% link dominant and 20% exhibit mixed behaviour [Nielsen 1997b].

- but are more successful when browsing
 - When browsing 53% of users find what they are looking for, when searching only 30% [UIE 1998].

This suggests that a good information hierarchy should be designed to support browsing users (supplemented with a table of contents) and a local search engine with sensible defaults to support searching users (supplemented with an alphabetical index). Adobe’s web site (www.adobe.com) is a good example of such a web site.

4 Competitive Analysis

If you have enough time and resources, a great deal can be learned from some evaluation of competitor’s web sites. If you are responsible for an airline’s web site, for example, testing two or three competing airlines’ web sites can reveal a number of things which work well, and many things which do not work well at all for that particular kind of web site.
5 Iterative Design

To help shape an information hierarchy for a web site, a card sorting test can be used. This initial hierarchy can then be translated into a paper mock-up [Rettig, 1994; UIE, 2000] of the web site and evaluated using heuristic evaluation and/or a thinking aloud test. Figure 1 shows a paper prototype of a proof-of-concept intranet radio station using streaming audio. After one or more rounds of evaluation, the paper mock-up is implemented as a working HTML prototype and again evaluated.

5.1 Card Sorting

Card sorting is used to form a hierarchical grouping of related concepts. In terms of web site design, concepts correspond to information chunks available on the site. The procedure for running a card sorting test is described below:

1. Make a list of concepts which should be present on your site (brainstorming, user interviews, client interviews).
2. Each concept corresponds to a chunk or set of information. Around 50-70 concepts are manageable in practice.
3. Make one notecard for each concept.
4. Concept cards are scattered on desk in random order.
5. The user looks through the concept cards to see if any concept is unclear.
6. If a user is unsure about what a concept means, the test facilitator first asks what the user thinks it might mean (for feedback), then explains what was actually intended.
7. The user then sorts cards into piles or categories (not too small and not too large) according to their perceived similarity, as shown in Figure 2.
8. The user names the piles using Post-it notes.
9. User should group smaller piles into larger groups of similar piles. If a single pile contains many (> 10–12) cards, ask the user to split it into subgroups.

Figure 1: A paper prototype interface for IICM on Air, a proof-of-concept intranet radio station based on streaming audio.
10. The user names the groups of piles using (different coloured) Post-its.

11. Ask the user to think aloud while they are working (the test facilitator should encourage them) and record the entire proceedings on videotape.

12. Each user typically works for about 30-40 minutes.

13. Capture the contents of each pile and group on paper (corresponding to this user’s two-level hierarchical structure).

14. Repeat with 3 to 5 users.

After performing card sorting with 3 to 5 test users, the users’ individual hierarchical structures are aggregated into a single hierarchy. This then forms the basis for an initial two-level hierarchy of information, organised the way users would expect. Depending on the size of the web site, card sorting can be repeated at higher or lower level of granularity.

5.2 Heuristic Evaluation (Expert Review)

A heuristic evaluation involves 3 to 5 usability specialists examining an interface and using their experience and judgement to suggest potential problems. A small set of 10 or so guiding principles (the heuristics) such as those shown in Table 2 are used by the evaluators as a checklist, giving the technique its name [Nielsen, 1997a].

The procedure for performing a heuristic evaluation can be summarised as below:

- Design may be verbal description, paper mock-up, working prototype, or running system.
- Optionally provide evaluators with some domain-specific training.
- Each evaluator works alone (≈1–2 hours).
1. **Minimalist Design**
 “Less is more” – irrelevant information distracts.

2. **Speak the Users’ Language**
 Use words, phrases, and concepts familiar to user, rather than system-oriented terms. Match users’ mental model. Beware of misleading metaphors.

3. **Recognition rather than Recall**
 Users’ short-term memory is limited – make objects, actions, and options visible. Provide examples, default values, easily retrievable instructions.

4. **Consistency**
 The same word, situation, or action should always have same meaning or effect. Follow platform conventions.

5. **Feedback**
 Keep the user informed about what is going on. Provide appropriate feedback within reasonable time (e.g. immediate response, busy cursor [1-10s], progress indicator [>10s]).

6. **Clearly Marked Exits**
 Provide clearly marked “emergency exit” to leave mistakenly entered state (e.g. Cancel, Undo, Redo).

7. **Accelerators**
 Accelerators, unseen by novice user, can be great aid to experienced user (e.g. abbreviations, command keys, type-ahead, edit and reissue previous commands, menu of most recently used files, macros).

8. **Good Error Messages**
 Error messages should be expressed in plain language (no codes), be defensive (never blame user), precisely indicate problem, and constructively suggest solution. Multilevel messages. Link to help system.

9. **Error Prevention**
 Careful design to prevent problems occurring in the first place (e.g. select file from menu rather than type in name, confirmation before dangerous actions, beware of modes, avoid similar command names).

10. **Help and Documentation**
 Easy to search, focussed on user task, list concrete steps, liberal use of examples, not overwhelmingly large.

Table 2: A checklist of ten usability heuristics used in a heuristic evaluation. Adapted from [Nielsen 1994a].
• Interface examined in two passes: first pass focuses on general flow, second on individual dialogue elements.

• Notes taken either by evaluator or evaluation manager.

• Independent findings are aggregated (by evaluators or evaluation manager) into a single long list of problems.

• Severity ratings are assigned by each evaluator individually and are then averaged.

• Group debriefing session to suggest possible redesigns.

5.3 Thinking Aloud Test

Whereas a heuristic evaluation is based on the options and judgements of evaluators, a thinking aloud test is based on the observation of representative test users (from the target population) working with the web site design to accomplish real tasks. The name thinking aloud refers to the fact that users are asked to verbalise their thoughts, or “think aloud”, as they work.

Although the act of thinking aloud has been shown to slow users down and possible slightly alter their working behaviour [Ericsson and Simon, 1993], the purpose here is not to conduct a formal psychological experiment, but rather to gain an insight into users’ thought processes as they work through a web site, and hence garner insights into why certain facets of a web site do not work well.

A quiet room is prepared with a test PC (or table space in the case of a paper mock-up) and a video camera, as shown in Figure 3. A mirror placed to one side of the monitor is used to capture the user’s facial expressions and the happenings on screen onto a single videotape. Members of the test team take on one or more of the following roles: test facilitator in overall charge of the test and responsible for all interaction with test user, data logger recording activities and events of interest, video operator responsible for recording the test proceedings, and computer operator dealing with technical setup and problems.

In brief, a thinking aloud test is organised like this: the test user welcomed by the test facilitator, briefed with a so-called orientation script and asked to fill out a background questionnaire and to sign a video consent and non-disclosure form. A demo of thinking aloud and any predetermined training is provided, and then the user is presented with the prespecified task scenarios one at a time. After working through each task, a short debriefing interview is conducted, and the user is thanked and shown out.

The orientation script puts the user at ease, by introducing members of the test team (first names only, no titles or job descriptions!), emphasising that the system is being tested and not user, that the system is new and has many bugs and rough edges, explaining any recording, and reassuring the user that they may stop at any time should they feel uncomfortable.

Many users find thinking aloud somewhat unnatural and start to dry up after a few minutes. I have found that showing a short video clip of a talkative test user from a previous test illustrates what you are looking for. Alternatively, the test facilitator can surf to an unrelated web site, state a goal (such as finding the local cinema listings), and proceed towards achieving that goal whilst thinking aloud. The test facilitator must also possess the interpersonal skills to keep test users talking whilst taking care not to prompt or bias them in any way.

Typically, five test users from any particular user category are enough at each iteration of testing to discover dozens of problems. It is also advisable to run the first test user as a pilot test at least two days before the remaining users. That way, any bugs in the test design, technical problems, or ambiguous task instructions can be ironed out before the main test itself.
Figure 3: A typical single room, single camera usability test setup.

Figure 4: A simple usability test with a single video camera. The workstation camera is being used to capture the user’s facial expressions and display them in the top right-hand corner of the monitor. Note also that the cameraman is monitoring audio levels with an earphone.
Case Study - Evaluating the Austrian Airlines Web Site

In May and June 2000, I had eight groups of four students each evaluate the Austrian Airlines web site (www.aua.com), shown in Figure 5, using the discount techniques outlined above. A heuristic evaluation by the four group members was followed by a thinking aloud usability test with five test users (the first being a pilot test). A whole range of problems in the site were unearthed, including:

- Given the task of booking a flight to a particular destination, many of the test users were confused by the Flightinfo and Booking page shown in Figure 6. The difference between the four subsystems AirManager, AirNet, Flight Planner, and Timetable is not immediately clear.

- Worse, the bottom two subsystems only allow you to look up flight information. If you then want to book the flights you have found, you have to go back to the Flightinfo and Booking page and start over again with one of the top two subsystems! Leading to some very frustrated users.

- Clicking on Search leads to a real gem, shown in Figure 7. The text explains that search functionality is currently not available. However, many of our test users stubbornly ignored the text (or did not consciously see it) and blithely typed a query into the inviting search box at the bottom of the page, not even noticing that this in fact is a banner ad.

- The result is shown in Figure 8. Users expecting to find information on flights to Madrid were presented with music CDs and became rather confused.

- The site has since been changed, and the search button now (February 2001) leads users to the Sitemap page shown in Figure 9. Certainly a step in the right direction, but there is still no search functionality in sight.

An example of a report from the Austrian Airlines test can be found here:

http://www2.iicm.edu/hci/practicals/examples

Concluding Remarks

In summary, I hope to have demonstrated the usefulness of web usability techniques for building usable web sites. A recipe for web usability on the cheap might be formulated as:

1. Know your users and their tasks
2. Design an information architecture (card sorting).
3. Build a paper mock-up (heuristic evaluation and thinking aloud).
4. Build a working prototype (heuristic evaluation and thinking aloud).
5. Iterate as necessary until time and/or resources run out.

For a comprehensive treatment of human-computer interaction, usability engineering, and web site design, readers are referred to the course notes of my course on Human-Computer Interaction which are available online [Andrews, 2001].
Figure 5: The Austrian Airlines home page (June 2000).

Figure 6: The Austrian Airlines flight info and booking page. Two of the four options (the red headings) allow you to look up flight information only, the other two to also then book what you have found.
Figure 7: The Austrian Airlines search page indicates that search functionality is not available. However, the search box at the bottom of the page looks very inviting.

Figure 8: Many test users entered a destination in the inviting search box and became very confused when transported off to lion.cc, a completely unrelated web site.
Figure 9: The current version of the site (Feb. 2001) leads users to the sitemap (table of contents) page when they press the Search button. Better, but still not Search.

References

