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Abstract

Supervised machine learning techniques require labelled multivariate training

datasets. Many approaches address the issue of unlabelled datasets by tightly

coupling machine learning algorithms with interactive visualisations. Using ap-

propriate techniques, analysts can play an active role in a highly interactive and

iterative machine learning process to label the dataset and create meaningful

partitions. While this principle has been implemented either for unsupervised,

semi-supervised, or supervised machine learning tasks, the combination of all

three methodologies remains challenging.

In this paper, a visual analytics approach is presented, combining a variety of

machine learning capabilities with four linked visualisation views, all integrated

within the mVis (multivariate Visualiser) system. The available palette of tech-

niques allows an analyst to perform exploratory data analysis on a multivariate

dataset and divide it into meaningful labelled partitions, from which a classifier

can be built. In the workflow, the analyst can label interesting patterns or out-

liers in a semi-supervised process supported by active learning. Once a dataset

has been interactively labelled, the analyst can continue the workflow with su-

pervised machine learning to assess to what degree the subsequent classifier has
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effectively learned the concepts expressed in the labelled training dataset. Using

a novel technique called automatic dimension selection, interactions the analyst

had with dimensions of the multivariate dataset are used to steer the machine

learning algorithms.

A real-world football dataset is used to show the utility of mVis for a series

of analysis and labelling tasks, from initial labelling through iterations of data

exploration, clustering, classification, and active learning to refine the named

partitions, to finally producing a high-quality labelled training dataset suitable

for training a classifier. The tool empowers the analyst with interactive visuali-

sations including scatterplots, parallel coordinates, similarity maps for records,

and a new similarity map for partitions.

Keywords: labelling, clustering, classification, active learning, multivariate

data, visualisation

1. Introduction

A multivariate dataset is a dataset with more than one dimension. Par-

titioning a multivariate dataset into labelled classes (partitions) is one of the

most prominent supervised machine learning (ML) tasks. Every record in a

partitioned dataset must belong to exactly one of the partitions: records cannot

belong to multiple partitions, nor can they be left belonging to no partition.

Once a classifier has learned the characteristics of a given multivariate dataset

in the training process, the ML model can thereafter be used to automatically

partition other, similar datasets. The state of the art in ML demonstrates the

effectiveness of today’s classifiers in many domains, from the detection of attacks

in computer networks [1] to facial image data analysis [2].

Two prerequisites for effective ML techniques are the availability of (1) suf-

ficiently large training datasets and (2) labels provided with those datasets.

Without labels, a supervised ML model cannot be trained. Without sufficient

numbers of labelled records for training, the supervised ML model will not per-

form effectively.
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However, the unavailability of labels for many real-world datasets is often

the bottleneck in supervised ML applications. Today’s scientists are often over-

whelmed by thousands or even millions of unlabelled records in datasets, all

of which are thus unavailable for supervised ML. Given a means to more effec-

tively support analysts in the labelling process, a plethora of unsolved real-world

data-centered challenges could be addressed with ML techniques.

The particular challenge addressed by the approach can be exemplified by

a domain expert wanting to use a previously unknown multivariate dataset for

supervised ML, where neither the characteristics of the dataset are known, nor

are there any labels or labelled records.

Sometimes, the cost of labelling a dataset is significantly higher than the

cost of creating it [3] and effective labelling solutions are still scarce. Analysts

are confronted with the problem of making sense of a dataset, for example by

identifying data characteristics such as frequent patterns or outliers. Active

learning (AL) techniques, where the system periodically asks the user to label

chosen records, can assist in the labelling process. However, since no labels exist

at the beginning, AL techniques often suffer from bootstrap problems [4].

Adding to the challenge is that an appropriate label alphabet, the vocabulary

of labels, is generally unknown at the start of such a process, given an unknown

dataset and/or users with ill-defined information needs. In some situations, dif-

ferent label alphabets might be appropriate, depending on the task at hand or

a user’s individual preferences. Analysts often derive the labels appropriate for

a specific dataset and task from the data itself, exploiting the characteristics

encoded in the multivariate data records and dimensions. In other situations,

analysts rely on special domain knowledge to come up with initial labels. In

any of these cases, neither AL tools nor the results of classifiers are particu-

larly helpful for the determination of a label alphabet. Furthermore, the label

alphabet is often subject to change during the labelling process itself.

Combining the strengths of humans and computers has been shown to be

highly beneficial for the ML process [5] as well as for information visualisation

and visual analytics (VA) [6]. The visual interactive labelling (VIAL) technique
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Figure 1: The scatterplot matrix (SPLOM) view 1 shows the bivariate relationships

between dimensions. The analyst can select a scatterplot from the SPLOM to show it

in detail 2 . The partition similarity map 3 shows partitions grouped by similarity

and colour-coded as indicated in the partitions panel 4 . If two partitions have associ-

ated dimensions (through user interaction), they are connected by a line. The parallel

coordinates view 5 shows the dimensions of the dataset. Dimensions participating in

the machine learning algorithms are indicated with a blue ribbon.

[7] combines ML principles with interactive visual interfaces for the effective

selection of records for labelling. This principle has been adopted here. With

the highly iterative VIAL process, a classifier can be continuously updated ac-

cording to new label information provided by the user. Embedded AL strategies

guide the user towards records which, once labelled, are likely to improve the

underlying ML model. In mVis (multivariate Visualiser), this principle is com-

plemented with interactive visual interfaces for data exploration, allowing the

meaningful selection and labelling of records based on insights gained by the

user, in addition to those suggested by AL. Figure 1 shows the user interface of

mVis.

The interactive visual approach described in this paper enables analysts to

label records and create partitions of a previously unknown dataset in an effec-
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tive and efficient way. While analysts may start without any knowledge about

the dataset and the label alphabet, the output of the implemented approach is

a labelled training dataset which can be used for supervised ML. The labelling

process represents a pathway from unsupervised ML, through semi-supervised

ML, to supervised ML. This pathway is guided by algorithmic models built upon

both unsupervised and supervised ML principles. The approach presented here

has three main components: (a) visual exploration, (b) interactive visual la-

belling, and (c) automatic guidance.

Firstly, the dataset can be explored interactively using a palette of linked

visualisations, including scatterplots, a SPLOM, similarity maps, and paral-

lel coordinates. These tools allow interactive visual exploration of a dataset’s

records and dimensions to both discover and then interactively label groupings,

patterns, and outliers. Moreover, a novel view called the partition similarity

map shows the similarity of partitions (each represented by a coloured node),

based on the centroid of each partition. A link is drawn between two partitions

if both partitions are associated with at least one common dimension. A dimen-

sion is associated with a partition, if the user interacted with that dimension

while adding records to the partition.

Secondly, records can be selected and labelled in any of the interactive views,

leading to labelled datasets which can be used for supervised ML. During the

labelling process, dimensions that the user interacted with to perform labelling

are added to the label as metadata. This solution facilitates labelling without

the need for domain-specific visual representations by leveraging the structural

information provided within a multivariate dataset, such as patterns and rela-

tions between records and dimensions. The original VIAL process is extended

by incorporating classic k-means and hierarchical clustering to the supervised

ML techniques.

Thirdly, clustering, active learning, and classifier algorithms are all available

to support the effective and efficient selection of candidate records for labelling.

In addition, using a new automatic dimension selection technique, interactions

of the user with specific data dimensions are remembered and fed into the semi-
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supervised and supervised ML techniques. For example, if the user selected

records in a scatterplot of dimensions A and B, and added these records to a

partition, then dimensions A and B are associated with that partition. Initially,

dimensions which are not interacted with play no role in the ML algorithms,

but the user has final control over which dimensions should be included in or

excluded from the ML algorithms.

The primary contribution of this paper is to elaborate how linked interactive

visualisations can be effectively integrated with classic ML algorithms to provide

guidance during the labelling process without overwhelming the user. This work

adds to explorations of the potentially large design space of visual analytics

methods facilitated by active learning, and sets examples upon which to build

future work. To demonstrate the effectiveness of the approach, it has been

incorporated into the mVis system and tested with a real-world football dataset.

2. Related Work

VA applications benefit from both unsupervised and supervised ML algo-

rithms to support data exploration and analytical reasoning [8]. Table 1 gives an

overview of some of the techniques which support interactive labelling. Unsuper-

vised machine learning techniques can be applied to unlabelled datasets, since

they do not require any training data. For example, clustering techniques [9] can

be used to find groupings of similar records within a dataset. Exploratory infor-

mation visualisations can be used to visually cluster (and then select) records

according to their similarity or dissimilarity, since similar records are typically

closer together in the visualisation. Semi-supervised ML techniques [10] require

at least some labelled data records before they can be used. In active learning,

some labelled data records are provided, and the system interactively collects

new examples through additional input from the user. Supervised ML tech-

niques such as classification [2] require a proper training set of labelled records.

Visual Clustering. Exploratory information visualisations can be used as inter-

active interfaces to select (groups of) similar records or to identify and select
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Visual Clustering Clustering Classification Active Learning

ML Type Unsupervised Unsupervised Supervised Semi-Supervised

Existing Labels Not Required Not Required Required Required

Records to Label Chosen by user.
All unlabelled

records.

Unlabelled records

closer than a

threshold to a label.

Specific number

of records

chosen strategically.

Creates Partitions By User Yes No No

Algorithms PCA, MDS, t-SNE
K-means,

Hierarchical
Random Forest Random Forest

Triggered By User User User System

Table 1: Techniques which support interactive labelling of records.

outliers. Scatterplots visualise records along two chosen dimensions. Records

which are similar (in those two dimensions) are plotted close together. Dimen-

sionality reduction and projection methods can be used to generate a similarity

map, which visually infers a clustering by spatial proximity. Records closer to-

gether in the projected similarity map are more similar to one another in the

high-dimensional space [11, 12]. In parallel coordinates [13], similar records are

represented by polylines which follow similar paths. It is also possible to filter

records by ranges on each dimension.

Cluster Sculptor [14] is an interactive clustering system which allows the

user to update the cluster labels of a dataset iteratively. The system relies on a

t-SNE projection view, label diffusion, and dissimilarity transform techniques.

Lee et al. [15] built a system called iVisClustering based on latent Dirichlet

allocation (LDA), which helps the user to perform clustering with interactive

visualisation, including parallel coordinates and scatterplots. RCLens [1] sup-

ports the identification and exploration of rare categories (minority classes),

utilising an active learning algorithm to help the analyst iteratively finds rare

categories within the dataset. In mVis, interactive clustering is used to guide

the analyst in finding some preliminary structure in the dataset.

Clustering. Classic clustering techniques such as k-means [16] and hierarchical

clustering [17] are used to form groups (partitions) of records according to their
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1. Create/Edit Partitions

User creates or edits
named partitions based on
interactive visualisations.

Records can be moved from
one partition to another.

2.1. Clustering/Classification
System classifies “unknown” records according 

to current model, or clusters them.

2.2. Active Learning
System guides user to label strategically chosen 

records, which improve quality of partitions.

3. Building the 
Classifier

Final labelled dataset
 is saved for use

as training dataset for a 
classifier.

Unlabelled
Dataset

Labelled
Dataset

Figure 2: The workflow for interactive labelling. First, the analyst creates and names

(labels) partitions in the dataset and assigns records to them. In the second and the

third step, with guidance from the system, partitions are refined, and more records

are added (labelled). After sufficient iterations, based on the quality of the result, the

analyst saves the labelled dataset to be used as a training dataset for a classifier.

similarity. The result of these clustering algorithms can be visually inspected.

In early work, gCluto [18] allowed an analyst to visually inspect clusters created

by running multiple clustering techniques while tuning the parameters. Nam

et al. [19] proposed a technique allowing analysts to tune the parameters of

clustering algorithms interactively to find suitable clusters based on the user’s

needs. The technique was proposed and tested on high-dimensional datasets.

Later, Andrienko et al. [20] suggested a general approach to find clusters in

large sets of spatial data objects and demonstrated the approach on a dataset

of trajectories. Kwon et al. [21] developed Clustervision, which clusters a dataset

with various clustering algorithms, and ranks and visualises clustering results

based on quality metrics, allowing analysts to choose the most suitable for their

purpose.

Classification. Classification is a supervised ML technique which can identify

to which class a record belongs, given a sufficiently large training set of labelled

records. VA can help classification algorithms by adding the knowledge of the

user in an iterative manner [22]. For example, iVisClassifier [2] supports a user-

driven classification process, where the analyst explores multi-dimensional data

through a supervised dimensionality reduction and performs classification.

Active Learning. The process of labelling records to create training data usually

requires tedious amounts of repetitive work by human analysts. Active Learning
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(AL) strategies interactively collect new labelled records by judiciously asking

for additional input from the user [10]. To make the process more effective and

efficient, it is crucial for the system to propose records for interactive labelling

wisely, choosing those records which are most likely to improve the underlying

ML model.

Known strategies include looking for helpful records a) near decision bound-

aries of margin-based classifiers [23, 24]), b) with high entropy of class proba-

bilities [25], c) with high uncertainty of a committee of classifiers [26, 27], or d)

to reduce risk [28] or variance [29].

Only a few existing techniques work independently of the learning model, by

choosing to focus on data characteristics. Some approaches explicitly allow users

to select records in the kind of interactive visualisations typically used for data

exploration or analysis [30–32]. The visual interactive-labelling (VIAL) process

[7] combines both model-based active learning and interactive visual interfaces

to support the human-centered selection and labelling of records. Recent ex-

periments have shown that individual strategies have different complementary

strengths [3, 33].

mVis extends the approach of VIAL: analysts can use linked interactive

visualisations to help mitigate the cold start problems associated with active

learning. In addition, clustering and classification are provided to better guide

the user in the labelling task.

3. Interactive Visual Labelling

It is often the case that an analyst is confronted by an exploratory scenario

in which the records in the dataset are unknown, and no labels are assigned

to them. For ML applications, similar records must be grouped together and

manually labelled in order to use the dataset as a training dataset. Since the

definition of similarity varies from dataset to dataset, it is necessary to offer

support to analysts to interactively group and label records and iteratively con-

struct the label alphabet (L).
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In an exploratory scenario, there is no single absolute L for a dataset. Based

on the knowledge of the expert, L and the records assigned to each partition

may vary significantly. Thus, a dynamic L is necessary to empower the analyst

to build an appropriately labelled dataset fitting the purpose of the desired

classifier. This includes allowing the analyst to (1) add new labels to L, (2)

delete labels from L, (3) add or remove records to a label in L and (4) rename

a label in L.

A partition, identified by Pi, is a set of records from the dataset, whereby

each record must belong to one and only one partition. The union of all parti-

tions P contains all records in the dataset. Each partition also has a label, li,

which is a text string belonging to the label alphabet L, and a set of related

dimensions Dimi:

Pi = (li, Reci, Dimi) (1)

where:

li is one of the labels in the alphabet L. One label exists for each partition, one

partition exists for each label.

Reci is the set of all records labelled as li. There is a non-injective non-surjective

function which maps records to partitions. In other words, every record

is mapped to one and only one label at a time; f : P → L, where f is

the function which maps records to labels. The mapping is guided by the

system, but is the analyst’s task.

Dimi is a set of dimensions that the user interacted with while adding records

to Pi. It is possible for a dimension to be associated with more than one

partition, and there could be dimensions which are not associated with

any partition.

3.1. Analyst Role: Selection and Labelling

Figure 2 illustrates the workflow in which an analyst creates and edits par-

titions and labels records interactively. Initially, all records are assigned to a
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(a) The initial state with three partitions:

green circles, blue circles, and red trian-

gles (unknown).

(b) After clustering from (a), with k-

means (k=3). The newly suggested clus-

ters (partitions) are orange, yellow, and

purple.

(c) After classification from (a) with a

similarity threshold of 70%. Hollow cir-

cles are the system suggestions.

(d) After active learning from (a) in

which the system suggested 30 records for

labelling by the user.

Figure 3: The results of clustering, classification, and active learning in mVis, each

applied to the initial state shown in (a). In each case, hollow circles indicate records

with labels suggested by the system. Solid circles indicate previously approved labels.

Solid red triangles indicate currently unlabelled records belonging to the unknown par-

tition.

11



special partition labelled as unknown. In the first step, the analyst creates at

least one partition, assigns records to it, and gives it a label. Later, the ana-

lyst can perform clustering and classification to label further records currently

labelled as unknown. In the case of clustering, the system creates new parti-

tions of unknown records and assigns temporary labels to them. In the case of

classification, currently labelled records are used as a training set to label other

unknown records based on existing partitions, which then potentially expands

them. In either case, the system provides guidance by suggesting new labelled

records, which the analyst can then approve or reject.

Periodically, the system suggests that the analyst should manually label a

specific number of records by running active learning techniques. These records

are wisely chosen to further resolve ambiguity in the dataset. The analyst

investigates the result and decides if the alphabet and labels on records need

further improvement. The process finishes when the analyst is satisfied with

the quality of the result. The result of this process is a label alphabet (L) and

a set of labelled partitions (Pi), in other words a labelled training dataset for

a classifier. Records still labelled unknown may or may not be included in the

output.

3.2. System Role: Guidance

The system’s role is to suggest records for labelling to the analyst by vi-

sual clustering, classic clustering, classification, and active learning. Table 1

differentiates between these four kinds of technique.

In terms of visual clustering, the system provides similarity maps using one of

three different projections: PCA, MDS, and t-SNE. Similar records are grouped

by proximity and the analyst can efficiently create and modify partitions by

visually inspecting these views.

In terms of classic clustering, the user can ask the system to cluster currently

unlabelled records, using either k-means or hierarchical clustering. This results

in a number of newly created partitions (i.e. clusters) with temporary labels,

which the analyst can then either rename, approve, or reject.
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Once sufficient numbers of records have been labelled, the analyst can use

classification to help label further records. After performing the classification,

the system calculates the similarity of each record (rj) to each partition (Pi).

The sum of all these scores for each record is always 100. The user can then

define a similarity threshold. The system will suggest adding records with a

similarity score higher than the threshold to the corresponding partition. If

multiple partitions have a higher similarity score than the threshold, the system

will choose the partition with the highest score. The user can either approve

or reject the new suggestions. In classification, no new partitions or labels are

created, but records may be added to the existing partitions Pi.

For active learning (AL), the system also requires a sufficient number of

labelled records. It then chooses those unlabelled records which are most likely

to further resolve ambiguity in the dataset, and asks the analyst to manually

label them. Unlike clustering and classification, AL is not triggered by the user,

but periodically by the system. Figure 3 shows the differing results of clustering,

classification, and active learning in mVis.

The set of all dimensions associated (by user interaction) to at least one

partition, Dim, is the union of all Dimi. The above techniques do not always

incorporate all of the dataset’s dimensions in their various calculations. Instead,

a set of participating dimensions is maintained by the system. Initially, the set of

participating dimensions is set to be Dim, a feature called automatic dimension

selection. However, the analyst has final control, and can include or exclude

any dimensions from the set of participating dimensions. The final result of

the workflow is a labelled dataset which includes Pi, L, and a set of related

dimensions.

4. mVis System Overview

The mVis system consists of four data visualisation views and a panel to

control partitions. mVis is written in Java and uses JavaFX for its user interface.

It supports traditional mouse and keyboard as well as multi-touch user input.
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A

B

(a) Creating P1.

A

C

(b) Creating P2.

{A}

P1

P2
unknown

(c) Similarity map.

Figure 4: Records are added to partition P1 (blue) from AB, then to partition P2

(green) from AC. The partition similarity map shows a link between P1 and P2 because

they are both associated with dimension A.

The system has been tested on a PC with a 3.4 GHz Intel i7-6700 CPU and

64 GB of RAM, running 64-bit Windows 10.

4.1. Visualisations and Partitions Panel

The four linked exploratory data visualisations built into mVis are: SPLOM,

scatterplot, similarity map (projection by PCA, MDS, and t-SNE), and parallel

coordinates plot. All the visualisations are connected through standard brushing

and linking, so selections and changes in one view are reflected in all other views.

Moreover, the user can close, rearrange, or enlarge any view. Axis tick labels in

the scatterplot and parallel coordinates views reflect the original values in the

dataset. Coordinates in the SPLOM view are normalised, so axis tick labels are

omitted.

The SPLOM provides an overview of the entire dataset by showing all bivari-

ate projections of n dimensions. The result is a matrix of n2 scatterplots [34].

The SPLOM can indicate both patterns of records in two dimensions and corre-

lations between pairs of dimensions, which can then be examined in individual

scatterplots.

Individual scatterplots are widely used for regression analysis [35] or explo-

ration of local patterns [36]. In mVis, the user can select a scatterplot in the

SPLOM, which is then shown enlarged in the scatterplot view.
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The parallel coordinates visualisation shows the dimensions of a dataset as

parallel vertical axes and its records as horizontal polylines [13]. Parallel co-

ordinates provide a concise overview of the entire dataset and are suitable for

exploring correlations between neighbouring dimensions. A parallel coordinates

plot has been shown to outperform individual scatterplots when the task re-

quires interaction with more than two dimensions [37]. In mVis, the parallel

coordinates view supports several interactions, including brushing and selection

of records, filtering of records by dragging sliders at the top and bottom of each

axis, reordering axes, and inverting axes.

The similarity map view provides two kinds of similarity map: a similarity

map of records and a similarity map of partitions. The record similarity map

shows all the records in the dataset visually clustered by similarity, using one

of three projection techniques: PCA, MDS, or t-SNE. More similar records are

closer together in the similarity map. The default projection technique is t-SNE,

but the user can choose a different technique in the preference menu.

The partition similarity map shows all currently defined partitions, grouped

by similarity in the form of a node-link diagram. Each partition is represented

as a circular node, whose size corresponds to the number of records in the par-

tition. If two partitions share associated dimensions, then a line (link) is drawn

to connect them, whose width corresponds to the number of shared associated

dimensions. Figure 4 illustrates how such a diagram is created. First, in Fig-

ure 4a, the analyst creates a partition P1 containing records selected in the

scatterplot of dimension A against dimension B (AB). Later, in Figure 4b, the

analyst assigns records to P2 from the scatterplot AC. Since both partitions

are associated with dimension A, there a link is drawn between P1 and P2, as

shown in Figure 4c.

The partitions panel shown in Figure 5 gives the analyst the possibility

to create new partitions, assign records to partitions, and delete partitions.

The name (label) of a partition can be edited and the colour assigned to it

can be changed. A special partition labelled unknown contains all currently

unlabelled records and is initially coloured red. If a partition is deleted, all

15



Add new
Partition

Classification
Options

Clustering
Options

Active Learning
Options

Change
Colour

Add
Records

Show/hide
Records

Delete
Partition

Approve
Suggestions

Reject
Suggestions

Number of
Records

Name of
the Label

Figure 5: The partitions panel. In the upper part of the panel, the analyst can create

partitions and obtain suggestions for records to add to them. The lower part of the

panel is for manipulating existing partitions.

records contained within it are returned to the unknown partition. The analyst

can temporarily hide the records in a given partition. Clicking the “+” button

next to a partition adds currently selected records to it.

Records which have been manually assigned to a partition or approved by

the analyst are considered to be “ground truth” and are represented by solid

circles in the SPLOM, scatterplot, and record similarity map. Hollow circles

represent records with a suggested partition, colour-coded according to the par-

tition. Unlabelled records belong to the unknown partition and are represented

by solid triangles, in the colour assigned to the unknown partition (initially red,

but the colour can be changed by the analyst).

In the upper part of the partitions panel, the analyst can initiate ML tech-

niques such as clustering and classification to obtain suggestions for records to

assign to partitions. Such records become hollow circles and are recoloured to

the suggested partition’s colour until either approved or rejected by the analyst

by clicking the Reject or Approve buttons next to each partition in the panel.

Suggested records which are rejected become solid (red) triangles again and are

16



k-means 1 k-means 2 k-means 3 k-means 4

Figure 6: The SPLOM after k-means clustering (k=4) with automatic dimension

selection. A blue ribbon beneath a dimension name indicates its participation in the

ML technique. The first two dimensions appearances and mins played from the football

dataset have participated in the clustering, which is reflected in the better results in

their rows and columns.

moved back into the unknown partition. Approved records become part of the

partition and are henceforth represented by solid circles.

4.2. Machine Learning Modules

Various ML algorithms are implemented to support the interactive labelling

process, including dimensionality reduction, clustering, classification, and active

learning. All of these algorithms are implemented using the Java library called

DMandML [38]. Interactions with a ML algorithm can be unintuitive and over-

whelming to use at times. mVis uses simple widgets and a minimal number of

exposed parameters to keep interactions intuitive.

While assigning records to partitions, the system keeps track of the dimen-

sions the user interacted with, maintaining a set of associated dimensions for

each partition. By default, only those dimensions associated with at least one

partition participate in the ML algorithms. The user can toggle participation of

a dimension by clicking on the dimension name in the SPLOM or parallel coor-
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(a) Three participating dimensions. (b) Two participating dimensions.

hierarchical 1 hierarchical 2 hierarchical 3 hierarchical 4

Figure 7: Part of the parallel coordinates plot after hierarchical clustering (k=4).

The clusters are more visually appealing in (b).

dinates view. Participating dimensions are indicated by a blue ribbon beneath

the dimension name. Figure 6 shows k-means clustering (k=4) utilising only

two of the eight available dimensions. Figure 7 demonstrates the effectiveness

of automatic dimension selection when hierarchical clustering is performed on

the dataset.

At any stage, the analyst can perform clustering by clicking on the cluster-

ing button in the partitions panel. The system will then cluster all currently

unlabelled (unknown) or unapproved records using k-means or hierarchical clus-

tering. By default, mVis uses k-means, but the user can change the algorithm

by selecting hierarchical in the menu. For each cluster, a new partition is created

and given a temporary name (label) of the form k-means #cn or hierarchical #cn,

where #cn is the number of the cluster. Records assigned to a cluster are simply

suggestions by the system and require subsequent user approval.

Alternatively, once sufficient records have been assigned labels, the analyst

can run a classifier to classify those records which are currently either unknown

or unapproved. The system then runs a Random Forest classifier using the

already labelled (approved) records as a training set. The user can control the
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(a) First step (b) Second step

(c) Third step (d) Fourth step

superstars playmakers goalkeepers bench tough defenders golden substitutesunknown

Figure 8: Four steps of labelling the football dataset, shown in the partition similarity

map. (a) The user manually creates superstars and playmakers partitions. (b) After a

clustering step using k-means, two partitions called goalkeepers and bench are approved

by the user. (c) The user creates tough defenders and golden substitutes partitions and

assigns records to them. (d) The user performs active learning to label more records.

The final result is a label alphabet with seven members.
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number of suggestions by adjusting the similarity threshold with the slider next

to the Classification button. While the slider is adjusted, a number indicates

its precise value. With a higher threshold, only those records more similar to a

specific partition will be suggested. Similar to clustering, the analyst can then

approve or reject the classification result.

Periodically, the system actively guides the user to manually label a number

of records using active learning. The suggested labels can either be approved or

rejected. The number of suggested records can be fine-tuned and active learning

can be turned off completely with the checkbox in the partitions panel.

The current design of mVis has visualisation and algorithmic limitations.

Regarding the visual scalability of the label alphabet (number of partitions),

upto around twelve distinct colours can be comfortably distinguished [39]. The

SPLOM and parallel coordinates views are limited by the amount of available

screen space. mVis runs in real-time with a football dataset comprising 42

dimensions and 318 records on a 25-inch desktop display at a resolution of

2560× 1440. One possibility to increase scalability would be to apply subspace

clustering to provide an initial set of records and dimensions to explore [40]. The

currently implemented ML algorithms run in real-time for the aforementioned

number of partitions and dimensions.

5. Use Case

The following use case utilises a football dataset of players from 16 clubs

participating in five top European leagues in the 2017/18 season [41]. The

records are individual players, the dimensions are players’ attributes such as

the number of match appearances, committed fouls, assists, pass accuracy, and

so forth. The dataset comprises 318 records and 13 dimensions.

The goal of the analyst exploring this dataset is (1) to group the players into

labelled partitions based on their characteristics, and (2) to use the dataset to

train a classifier for other seasons of the same or even entirely different football

leagues.
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For an initial grouping, the analyst wants to identify match-winning players

and label them as superstars. The analyst proceeds by selecting the scatterplot

of goals against assists in the SPLOM. The analyst creates a partition, labels it

superstars, and includes all data records with high numbers of goals and assists.

Another important category of players are the so-called playmakers, having a

high number of assists and key passes. By filtering players with a high number of

assists and key passes in the parallel coordinates view, the analyst can find records

to add to the playmakers partition. To expand the label content so that not

only top players are included, the analyst searches for players similar to those

selected. To this end, the analyst sets the Classification Threshold slider in

the partitions panel (see Figure 5) to 60% and clicks the Classification button.

As a result, the system suggests 100 records be labelled as playmakers and 20

as superstars. The analyst realises that this is a large number of players to be

added to each partition and decides to reject the suggestion. Later, the analyst

performs another classification with the slider at 80%. This time, 15 records are

suggested to be added to playmakers and 5 to superstars. The analyst accepts

the suggestion by clicking the Approve button of both partitions. The partition

similarity map in Figure 8a shows the state of the dataset after creating the

partitions superstars and playmakers.

Apart from these two obvious choices, the relationships between other di-

mensions are unfamiliar to the analyst. The analyst turns off the automatic di-

mension selection feature, chooses 4 as the value in the # of Clusters field, and

performs a k-means clustering. By making all partitions except one invisible, the

analyst inspects the newly suggested partitions one by one. The first suggested

partition is k-means 1, containing 16 records. The analyst realises all the di-

mensions for these records are zero except appearance, mins played, and ball recovery.

Therefore, the analyst renames the k-means 1 partition to goalkeepers. Similarly,

the analyst renames k-means 2 with 88 records to offensive players. This parti-

tion is associated with the dimensions key passes, dribbles won, and goals. Next, the

analyst renames k-means 3 with 71 players to defensive players, since it is asso-

ciated with ball recovery, clearances, aerial duels won, fouls committed, and interceptions.
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(a) K-means. (b) Hiearchical.

Figure 9: The results of k-means and hierarchical clustering for k=6, using offensive

attributes of football players.

Finally, the partition k-means 4 with 116 records is renamed bench. This partition

is associated with a low number of appearances and mins played.

The goal is not to create partitions based solely on a player’s role on the field,

so the analyst decides to delete the partitions offensive players and defensive players

by clicking their Delete buttons, but to retain the partitions goalkeepers and bench

by clicking their Approve buttons. Figure 8b shows the state of the dataset after

this step.

Similar to the group of match-winning superstars, the analyst wants a label

for defensive players having a high impact on the team. From the previous explo-

ration, the analyst already knows which dimensions are associated with defen-

sive characteristics. Therefore, the analyst creates the tough defenders partition

characterised by their performance in the dimensions aerial duels won, interceptions,

and tackles won.

Exploring further, the analyst selects all records which (1) belong to the

bench partition and (2) have either a high number of goals, key passes, clearances,

dribbles won, assists, or aerial duels won and calls the new partition golden substitutes.

To further support the analyst, the remaining unlabelled records (belonging

to the unknown partition) can be suggested to existing partitions via active

learning. This helps refine existing labels and increasing the overall quality, an
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(a) MDS (b) PCA (c) t-SNE

Figure 10: The three projection techniques provided by the record similarity map.

The colours were assigned by an initial k-means clustering with k=6.

option which is not possible in traditional ML techniques.

The analyst investigates the result shown in the partition similarity map of

Figure 8d. The tough defenders partition is linked to golden substitutes partition,

since they are both associated with the clearances dimension. Also, playmakers

and superstars are relatively close to one other in the partition similarity map,

possibly because playmakers and superstars share similar offensive characteristics.

Since the user interacted with eleven dimensions, only two dimensions are not

highlighted with a blue ribbon.

The result of the session is a labelled football players dataset with meaningful

partitions, which can be used as a training dataset for a classifier for other

seasons or different leagues.

6. Discussion and Future Work

Characterising, comparing, and grouping (partitioning) the records in a

dataset are among the most essential tasks in data analysis. The implemented

approach supports these tasks with an interactive visual labelling tool. Using

interactive visualisations, an analyst can identify and label groups of records

in a dataset initially containing no pre-labelled records. Once the analyst has

provided an initial labelling, the system supports labelling more records via

clustering, classification, and active learning. With the help of clustering, the

analyst can find structures in the dataset which may not be visible by manual
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exploration. Using classification, the labelled data will be used as a training set

for records which are not yet labelled. Moreover, the active learning module

regularly makes strategic suggestions to improve the quality of partitions. The

user is always responsible for approving or rejecting suggestions, which increases

overall trust in the result. As the presented use case shows, algorithmic support

helps efficiently propagate current labelling to more records. The approach sup-

ports both the creation of a new label alphabet and the refinement of an existing

label alphabet.

Currently, mVis supports both k-means and hierarchical clustering. Al-

though k-means is more scalable and hierarchical is more flexible, neither is

superior to the other. It is the responsibility of the domain expert to choose

the most suitable algorithm in a specific situation. Figure 9 shows the results

of k-means and hierarchical clustering in the football dataset.

Three projection algorithms (MDS, PCA, and t-SNE) are supported for the

record similarity map. Research by Bernard et al. [3] shows that users prefer t-

SNE as a dimensionality reduction technique for labelling tasks and later switch

to PCA and MDS for validation. Therefore, the default algorithm in mVis is

t-SNE. Figure 10 shows the differences between these algorithms, performed on

the football dataset.

Formative usability evaluation would provide valuable insights into how to

improve the system and its user interface. A user study could help evaluate the

implemented approach. For example, an experiment could measure classification

accuracy as analyst interactions (number of clicks, number of created labels,

etc.) with the system increase.

Since the labelling process is performed iteratively, it might be beneficial to

keep a history of all user interactions and operations. The user may wish to re-

visit earlier labelling decisions, and possibly update the alphabet and partitions.

Providing a visual history of labelling provenance, and how to propagate changes

to earlier labelling decisions is an interesting research topic for future work. This

also raises the need for appropriate comparative visualisation techniques [42], to

contrast the different selections. Finally, one possibility to provide an analyst
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with interesting initial views to start labelling would be to use Scagnostics or

Pargnostics features [43] to guide the user to relevant views.

7. Concluding Remarks

This paper presented an approach to make partitions on a multivariate

dataset that does not contain any labelled record. Using appropriate views

including partition similarity map, the analyst can manually label records with

the help of classification, clustering and active learning algorithms. The result

of the process is a properly labelled and partitioned dataset. An implementation

of the approach called mVis had shown its usefulness for a real-world football

dataset.
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